Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Destroying Densest Subgraphs is Hard (2404.08599v1)

Published 12 Apr 2024 in cs.DS

Abstract: We analyze the computational complexity of the following computational problems called Bounded-Density Edge Deletion and Bounded-Density Vertex Deletion: Given a graph $G$, a budget $k$ and a target density $\tau_\rho$, are there $k$ edges ($k$ vertices) whose removal from $G$ results in a graph where the densest subgraph has density at most $\tau_\rho$? Here, the density of a graph is the number of its edges divided by the number of its vertices. We prove that both problems are polynomial-time solvable on trees and cliques but are NP-complete on planar bipartite graphs and split graphs. From a parameterized point of view, we show that both problems are fixed-parameter tractable with respect to the vertex cover number but W[1]-hard with respect to the solution size. Furthermore, we prove that Bounded-Density Edge Deletion is W[1]-hard with respect to the feedback edge number, demonstrating that the problem remains hard on very sparse graphs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube