Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Start Regions for Medical Steerable Needle Automation (2404.08558v1)

Published 12 Apr 2024 in cs.RO

Abstract: Steerable needles are minimally invasive devices that enable novel medical procedures by following curved paths to avoid critical anatomical obstacles. Planning algorithms can be used to find a steerable needle motion plan to a target. Deployment typically consists of a physician manually inserting the steerable needle into tissue at the motion plan's start pose and handing off control to a robot, which then autonomously steers it to the target along the plan. The handoff between human and robot is critical for procedure success, as even small deviations from the start pose change the steerable needle's workspace and there is no guarantee that the target will still be reachable. We introduce a metric that evaluates the robustness to such start pose deviations. When measuring this robustness to deviations, we consider the tradeoff between being robust to changes in position versus changes in orientation. We evaluate our metric through simulation in an abstract, a liver, and a lung planning scenario. Our evaluation shows that our metric can be combined with different motion planners and that it efficiently determines large, safe start regions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (77)
  1. T. K. Adebar, J. D. Greer, P. F. Laeseke, G. L. Hwang, and A. M. Okamura, “Methods for improving the curvature of steerable needles in biological tissue,” IEEE Transactions on Biomedical Engineering, vol. 63, no. 6, pp. 1167–1177, 2015.
  2. R. Secoli, E. Matheson, M. Pinzi, S. Galvan, A. Donder, T. Watts, M. Riva, D. D. Zani, L. Bello, and F. Rodriguez y Baena, “Modular robotic platform for precision neurosurgery with a bio-inspired needle: System overview and first in-vivo deployment,” PLOS ONE, vol. 17, no. 10, pp. 1–29, 10 2022. [Online]. Available: https://doi.org/10.1371/journal.pone.0275686
  3. A. Kuntz, M. Emerson, T. E. Ertop, I. Fried, M. Fu, J. Hoelscher, M. Rox, J. Akulian, E. A. Gillaspie, Y. Z. Lee et al., “Autonomous medical needle steering in vivo,” Science Robotics, vol. 8, no. 82, p. eadf7614, 2023.
  4. A. Majewicz and A. M. Okamura, “Cartesian and joint space teleoperation for nonholonomic steerable needles,” in 2013 World Haptics Conference (WHC).   IEEE, 2013, pp. 395–400.
  5. J. Hoelscher, M. Fu, I. Fried, M. Emerson, T. E. Ertop, M. Rox, A. Kuntz, J. A. Akulian, R. J. Webster III, and R. Alterovitz, “Backward planning for a multi-stage steerable needle lung robot,” Robotics and Automation Letters (RA-L), vol. 6, no. 2, pp. 3987–3994, 2021.
  6. S. Patil, J. Burgner, R. J. Webster, and R. Alterovitz, “Needle steering in 3-d via rapid replanning,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 853–864, 2014.
  7. R. J. Webster III, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, “Nonholonomic modeling of needle steering,” The International Journal of Robotics Research, vol. 25, no. 5-6, pp. 509–525, 2006.
  8. K. Hauser and Y. Zhou, “Asymptotically optimal planning by feasible kinodynamic planning in a state–cost space,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1431–1443, 2016.
  9. N. J. Cowan, K. Goldberg, G. S. Chirikjian, G. Fichtinger, R. Alterovitz, K. B. Reed, V. Kallem, W. Park, S. Misra, and A. M. Okamura, “Robotic needle steering: Design, modeling, planning, and image guidance,” in Surgical Robotics.   Springer, 2011, pp. 557–582.
  10. M. Rox, M. Emerson, T. E. Ertop, I. Fried, M. Fu, J. Hoelscher, A. Kuntz, J. Granna, J. Mitchell, M. Lester, F. Maldonado, E. A. Gillaspie, J. A. Akulian, R. Alterovitz, and R. J. Webster, “Decoupling steerability from diameter: Helical dovetail laser patterning for steerable needles,” IEEE Access, vol. 8, pp. 181 411–181 419, 2020.
  11. D. S. Minhas, J. A. Engh, M. M. Fenske, and C. N. Riviere, “Modeling of needle steering via duty-cycled spinning,” in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.   IEEE, 2007, pp. 2756–2759.
  12. D. C. Rucker, J. Das, H. B. Gilbert, P. J. Swaney, M. I. Miga, N. Sarkar, and R. J. Webster, “Sliding mode control of steerable needles,” IEEE Transactions on Robotics, vol. 29, no. 5, pp. 1289–1299, 2013.
  13. T. E. Ertop, M. Emerson, M. Rox, J. Granna, R. Webster, F. Maldonado, E. Gillaspie, M. Lester, A. Kuntz, C. Rucker et al., “Steerable needle trajectory following in the lung: Torsional deadband compensation and full pose estimation with 5dof feedback for needles passing through flexible endoscopes,” in Dynamic Systems and Control Conference, vol. 84270.   American Society of Mechanical Engineers, 2020, p. V001T05A003.
  14. I. Fried, J. Hoelscher, M. Fu, M. Emerson, T. E. Ertop, M. Rox, J. Granna, A. Kuntz, J. A. Akulian, R. J. Webster et al., “Design considerations for a steerable needle robot to maximize reachable lung volume,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 1418–1425.
  15. V. Duindam, J. Xu, R. Alterovitz, S. Sastry, and K. Goldberg, “Three-dimensional motion planning algorithms for steerable needles using inverse kinematics,” The International Journal of Robotics Research, vol. 29, no. 7, pp. 789–800, 2010.
  16. S. Bano, S. Y. Ko, and F. R. y Baena, “Smooth path planning for a biologically-inspired neurosurgical probe,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.   IEEE, 2012, pp. 920–923.
  17. A. Segato, V. Corbetta, J. Zangari, S. Perri, F. Calimeri, and E. De Momi, “Optimized 3d path planner for steerable catheters with deductive reasoning,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 1466–1472.
  18. P. Li, S. Jiang, J. Yang, and Z. Yang, “A combination method of artificial potential field and improved conjugate gradient for trajectory planning for needle insertion into soft tissue,” Journal of Medical and Biological Engineering, vol. 34, no. 6, pp. 568–573, 2014.
  19. C. Caborni, S. Y. Ko, E. De Momi, G. Ferrigno, and F. R. y Baena, “Risk-based path planning for a steerable flexible probe for neurosurgical intervention,” in 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).   IEEE, 2012, pp. 866–871.
  20. J. Xu, V. Duindam, R. Alterovitz, and K. Goldberg, “Motion planning for steerable needles in 3d environments with obstacles using rapidly-exploring random trees and backchaining,” in 2008 IEEE international conference on automation science and engineering.   IEEE, 2008, pp. 41–46.
  21. W. Sun, J. Van Den Berg, and R. Alterovitz, “Stochastic extended LQR: Optimization-based motion planning under uncertainty,” in Algorithmic Foundations of Robotics XI.   Springer, 2015, pp. 609–626.
  22. S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” TR 98-11, Computer Science Dept., Iowa State Univ., 1998.
  23. S. Patil and R. Alterovitz, “Interactive motion planning for steerable needles in 3d environments with obstacles,” in Proc. IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 2010, pp. 893–899.
  24. A. Favaro, A. Segato, F. Muretti, and E. De Momi, “An evolutionary-optimized surgical path planner for a programmable bevel-tip needle,” IEEE Transactions on Robotics, vol. 37, no. 4, pp. 1039–1050, 2021.
  25. F. Liu, A. Garriga-Casanovas, R. Secoli, and F. {Rodriguez y Baena}, “Fast and adaptive fractal tree-based path planning for programmable bevel tip steerable needles,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 601–608, 2016.
  26. M. Pinzi, S. Galvan, and F. Rodriguez y Baena, “The adaptive hermite fractal tree (AHFT): a novel surgical 3d path planning approach with curvature and heading constraints,” International Journal of Computer Assisted Radiology and Surgery, vol. 14, no. 4, pp. 659–670, 2019.
  27. M. Fu, K. Solovey, O. Salzman, and R. Alterovitz, “Toward certifiable optimal motion planning for medical steerable needles,” The International Journal of Robotics Research, vol. 42, no. 10, pp. 798–826, 2023.
  28. A. Segato, M. Di Marzo, S. Zucchelli, S. Galvan, R. Secoli, and E. De Momi, “Inverse reinforcement learning intra-operative path planning for steerable needle,” IEEE Transactions on Biomedical Engineering, vol. 69, no. 6, pp. 1995–2005, 2021.
  29. W. Sun, S. Patil, and R. Alterovitz, “High-frequency replanning under uncertainty using parallel sampling-based motion planning,” IEEE Transactions on Robotics, vol. 31, no. 1, pp. 104–116, 2015.
  30. M. Pinzi, T. Watts, R. Secoli, S. Galvan, and F. Rodriguez y Baena, “Path replanning for orientation-constrained needle steering,” IEEE Transactions on Biomedical Engineering, vol. 68, no. 5, pp. 1459–1466, 2021.
  31. A. Segato, F. Calimeri, I. Testa, V. Corbetta, M. Riva, and E. De Momi, “A hybrid inductive learning-based and deductive reasoning-based 3-d path planning method in complex environments,” Autonomous Robots, vol. 46, no. 5, pp. 645–666, 2022.
  32. A. Kuntz, L. G. Torres, R. H. Feins, R. J. Webster, and R. Alterovitz, “Motion planning for a three-stage multilumen transoral lung access system,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 3255–3261.
  33. R. Alterovitz, M. Branicky, and K. Goldberg, “Motion planning under uncertainty for image-guided medical needle steering,” The International Journal of Robotics Research, vol. 27, no. 11-12, pp. 1361–1374, 2008.
  34. W. Park, J. S. Kim, Y. Zhou, N. J. Cowan, A. M. Okamura, and G. S. Chirikjian, “Diffusion-based motion planning for a nonholonomic flexible needle model,” in Proc. International Conference on Robotics and Automation (ICRA).   IEEE, 2005, pp. 4600–4605.
  35. J. van den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncertainty using iterative local optimization in belief space,” The International Journal of Robotics Research, vol. 31, no. 11, pp. 1263–1278, 2012.
  36. R. Alterovitz, K. Goldberg, and A. Okamura, “Planning for steerable bevel-tip needle insertion through 2d soft tissue with obstacles,” in Proc. International Conference on Robotics and Automation (ICRA).   IEEE, 2005, pp. 1640–1645.
  37. S. Patil, J. van den Berg, and R. Alterovitz, “Motion planning under uncertainty in highly deformable environments,” in Proc. Robotics Science and Systems (RSS).   RSS, 2011.
  38. A. Segato, C. Di Vece, S. Zucchelli, M. Di Marzo, T. Wendler, M. F. Azampour, S. Galvan, R. Secoli, and E. De Momi, “Position-based dynamics simulator of brain deformations for path planning and intra-operative control in keyhole neurosurgery,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 6061–6067, 2021.
  39. V. Duindam, R. Alterovitz, S. Sastry, and K. Goldberg, “Screw-based motion planning for bevel-tip flexible needles in 3d environments with obstacles,” in 2008 IEEE international conference on robotics and automation.   IEEE, 2008, pp. 2483–2488.
  40. C. Burrows, F. Liu, and F. R. y Baena, “Smooth on-line path planning for needle steering with non-linear constraints,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2015, pp. 2653–2658.
  41. M. Fu, A. Kuntz, R. J. Webster, and R. Alterovitz, “Safe motion planning for steerable needles using cost maps automatically extracted from pulmonary images,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 4942–4949.
  42. M. Bentley, C. Rucker, C. Reddy, O. Salzman, and A. Kuntz, “Safer motion planning of steerable needles via a shaft-to-tissue force model,” Journal of Medical Robotics Research, 2023.
  43. A. Favaro, L. Cerri, S. Galvan, F. Rodriguez y Baena, and E. De Momi, “Automatic optimized 3d path planner for steerable catheters with heuristic search and uncertainty tolerance,” in Proc. International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 9–16.
  44. J. Hoelscher, I. Fried, M. Fu, M. Patwardhan, M. Christman, J. Akulian, R. J. Webster, and R. Alterovitz, “A metric for finding robust start positions for medical steerable needle automation,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 9526–9533.
  45. A. Hong, Q. Boehler, R. Moser, A. Zemmar, L. Stieglitz, and B. J. Nelson, “3d path planning for flexible needle steering in neurosurgery,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 15, no. 4, p. e1998, 2019.
  46. V. Vakharia and F. R. y Baena, “Computer assisted planning for curved laser interstitial thermal therapy,” IEEE Transactions on Biomedical Engineering, vol. 68, no. 10, pp. 2957–2964, 2021.
  47. A. Segato, V. Pieri, A. Favaro, M. Riva, A. Falini, E. De Momi, and A. Castellano, “Automated steerable path planning for deep brain stimulation safeguarding fiber tracts and deep gray matter nuclei,” Frontiers in Robotics and AI, vol. 6, p. 70, 2019.
  48. M. Feng, X. Jin, W. Tong, X. Guo, J. Zhao, and Y. Fu, “Pose optimization and port placement for robot-assisted minimally invasive surgery in cholecystectomy,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 13, no. 4, p. e1810, 2017.
  49. J. W. Cannon, J. A. Stoll, S. D. Selha, P. E. Dupont, R. D. Howe, and D. F. Torchiana, “Port placement planning in robot-assisted coronary artery bypass,” Transactions on Robotics and Automation, vol. 19, no. 5, pp. 912–917, 2003.
  50. A. Wankhede, L. Madiraju, D. Patel, K. Cleary, C. Oluigbo, and R. Monfaredi, “Heuristic-based optimal path planning for neurosurgical tumor ablation,” in Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 10951.   SPIE, 2019, pp. 655–663.
  51. L. Adhami, E. Coste-Maniere, and J.-D. Boissonnat, “Planning and simulation of robotically assisted minimal invasive surgery,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2000: Third International Conference, Pittsburgh, PA, USA, October 11-14, 2000. Proceedings 3.   Springer, 2000, pp. 624–633.
  52. Y. Hayashi, K. Misawa, and K. Mori, “Optimal port placement planning method for laparoscopic gastrectomy,” International Journal of Computer Assisted Radiology and Surgery, vol. 12, no. 10, pp. 1677–1684, 2017.
  53. L. W. Sun and C. K. Yeung, “Port placement and pose selection of the da Vinci surgical system for collision-free intervention based on performance optimization,” in Proc. International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2007, pp. 1951–1956.
  54. N. Vahrenkamp, H. Arnst, M. Wächter, D. Schiebener, P. Sotiropoulos, M. Kowalik, and T. Asfour, “Workspace analysis for planning human-robot interaction tasks,” in Proc. International Conference on Humanoid Robots (Humanoids).   IEEE, 2016, pp. 1298–1303.
  55. J. Mainprice, M. Gharbi, T. Siméon, and R. Alami, “Sharing effort in planning human-robot handover tasks,” in Proc. International Symposium on Robot and Human Interactive Communication (RO-MAN).   IEEE, 2012, pp. 764–770.
  56. I. D. Walker, L. Mears, R. S. Mizanoor, R. Pak, S. Remy, and Y. Wang, “Robot-human handovers based on trust,” in 2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI).   IEEE, 2015, pp. 119–124.
  57. L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents,” American Journal of Mathematics, vol. 79, no. 3, pp. 497–516, 1957.
  58. W. Cai, M. Zhang, and Y. R. Zheng, “Task assignment and path planning for multiple autonomous underwater vehicles using 3d dubins curves,” Sensors, vol. 17, no. 7, p. 1607, 2017.
  59. S. Hota and D. Ghose, “Optimal geometrical path in 3d with curvature constraint,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2010, pp. 113–118.
  60. ——, “Optimal trajectory planning for path convergence in three-dimensional space,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 228, no. 5, pp. 766–780, 2014.
  61. M. Elbanhawi and M. Simic, “Randomised kinodynamic motion planning for an autonomous vehicle in semi-structured agricultural areas,” Biosystems Engineering, vol. 126, pp. 30–44, 2014.
  62. H. Chitsaz and S. M. LaValle, “Time-optimal paths for a dubins airplane,” in 2007 46th IEEE conference on decision and control.   IEEE, 2007, pp. 2379–2384.
  63. J. Fauser, G. Sakas, and A. Mukhopadhyay, “Planning nonlinear access paths for temporal bone surgery,” International journal of computer assisted radiology and surgery, vol. 13, pp. 637–646, 2018.
  64. H. Choset and W. Henning, “A follow-the-leader approach to serpentine robot motion planning,” Journal of Aerospace Engineering, vol. 12, no. 2, pp. 65–73, 1999.
  65. A. M. Shkel and V. Lumelsky, “Classification of the dubins set,” Robotics and Autonomous Systems, vol. 34, no. 4, pp. 179–202, 2001.
  66. J. Ichnowski and R. Alterovitz, “Concurrent nearest-neighbor searching for parallel sampling-based motion planning in SO(3), SE(3), and euclidean spaces,” Springer, 2018.
  67. American Cancer Society, “Cancer facts and figures,” American Cancer Society Tech. Rep., 2022.
  68. F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: a cancer journal for clinicians, vol. 68, no. 6, pp. 394–424, 2018.
  69. M. Torbenson and P. Schirmacher, “Liver cancer biopsy–back to the future?!” Hepatology, vol. 61, no. 2, pp. 431–433, 2015.
  70. S. Bodard, S. Guinebert, E. N. Petre, B. Marinelli, D. Sarkar, M. Barral, and F. H Cornelis, “Percutaneous liver interventions with robotic systems: a systematic review of available clinical solutions,” The British Journal of Radiology, p. 20230620, 2023.
  71. Reed, K. B., Majewicz, A., Kallem, V., Alterovitz, R., Goldberg, K., Cowan, N. J. and A. M. Okamura, “Robot-assisted needle steering,” IEEE Robotics and Automation Magazine, vol. 18, no. 4, pp. 35–46, 2011.
  72. K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle et al., “The cancer imaging archive (tcia): maintaining and operating a public information repository,” Journal of digital imaging, vol. 26, pp. 1045–1057, 2013.
  73. I. Fried, J. A. Akulian, and R. Alterovitz, “A clinical dataset for the evaluation of motion planners in medical applications,” arXiv preprint arXiv:2210.10834, 2022.
  74. R. Kikinis, S. D. Pieper, and K. G. Vosburgh, “3d slicer: a platform for subject-specific image analysis, visualization, and clinical support,” in Intraoperative imaging and image-guided therapy.   Springer, 2014, pp. 277–289.
  75. A. Kuntz, P. J. Swaney, A. Mahoney, R. H. Feins, Y. Z. Lee, R. J. Webster III, and R. Alterovitz, “Toward transoral peripheral lung access: Steering bronchoscope-deployed needles through porcine lung tissue,” in Hamlyn Symposium on Medical Robotics, 2016, pp. 9–10.
  76. S. G. Armato III, G. McLennan, L. Bidaut, M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves, B. Zhao, D. R. Aberle, C. I. Henschke, E. A. Hoffman et al., “The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on ct scans,” Medical physics, vol. 38, no. 2, pp. 915–931, 2011.
  77. I. Fried, J. Hoelscher, J. A. Akulian, and R. Alterovitz, “A dataset of anatomical environments for medical robots: Modeling respiratory deformation,” arXiv preprint arXiv:2310.04289, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Janine Hoelscher (3 papers)
  2. Inbar Fried (6 papers)
  3. Spiros Tsalikis (2 papers)
  4. Jason Akulian (2 papers)
  5. Robert J. Webster III (6 papers)
  6. Ron Alterovitz (13 papers)

Summary

We haven't generated a summary for this paper yet.