Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Pay Attention to Your Neighbours: Training-Free Open-Vocabulary Semantic Segmentation (2404.08181v2)

Published 12 Apr 2024 in cs.CV

Abstract: Despite the significant progress in deep learning for dense visual recognition problems, such as semantic segmentation, traditional methods are constrained by fixed class sets. Meanwhile, vision-language foundation models, such as CLIP, have showcased remarkable effectiveness in numerous zero-shot image-level tasks, owing to their robust generalizability. Recently, a body of work has investigated utilizing these models in open-vocabulary semantic segmentation (OVSS). However, existing approaches often rely on impractical supervised pre-training or access to additional pre-trained networks. In this work, we propose a strong baseline for training-free OVSS, termed Neighbour-Aware CLIP (NACLIP), representing a straightforward adaptation of CLIP tailored for this scenario. Our method enforces localization of patches in the self-attention of CLIP's vision transformer which, despite being crucial for dense prediction tasks, has been overlooked in the OVSS literature. By incorporating design choices favouring segmentation, our approach significantly improves performance without requiring additional data, auxiliary pre-trained networks, or extensive hyperparameter tuning, making it highly practical for real-world applications. Experiments are performed on 8 popular semantic segmentation benchmarks, yielding state-of-the-art performance on most scenarios. Our code is publicly available at https://github.com/sinahmr/NACLIP.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com