Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An efficient domain-independent approach for supervised keyphrase extraction and ranking (2404.07954v1)

Published 24 Mar 2024 in cs.IR, cs.CL, and cs.LG

Abstract: We present a supervised learning approach for automatic extraction of keyphrases from single documents. Our solution uses simple to compute statistical and positional features of candidate phrases and does not rely on any external knowledge base or on pre-trained LLMs or word embeddings. The ranking component of our proposed solution is a fairly lightweight ensemble model. Evaluation on benchmark datasets shows that our approach achieves significantly higher accuracy than several state-of-the-art baseline models, including all deep learning-based unsupervised models compared with, and is competitive with some supervised deep learning-based models too. Despite the supervised nature of our solution, the fact that does not rely on any corpus of "golden" keywords or any external knowledge corpus means that our solution bears the advantages of unsupervised solutions to a fair extent.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.