Papers
Topics
Authors
Recent
2000 character limit reached

A Parsimonious Setup for Streamflow Forecasting using CNN-LSTM (2404.07924v1)

Published 11 Apr 2024 in cs.LG

Abstract: Significant strides have been made in advancing streamflow predictions, notably with the introduction of cutting-edge machine-learning models. Predominantly, Long Short-Term Memories (LSTMs) and Convolution Neural Networks (CNNs) have been widely employed in this domain. While LSTMs are applicable in both rainfall-runoff and time series settings, CNN-LSTMs have primarily been utilized in rainfall-runoff scenarios. In this study, we extend the application of CNN-LSTMs to time series settings, leveraging lagged streamflow data in conjunction with precipitation and temperature data to predict streamflow. Our results show a substantial improvement in predictive performance in 21 out of 32 HUC8 basins in Nebraska, showcasing noteworthy increases in the Kling-Gupta Efficiency (KGE) values. These results highlight the effectiveness of CNN-LSTMs in time series settings, particularly for spatiotemporal hydrological modeling, for more accurate and robust streamflow predictions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.