Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Novel Optimization-Based Collision Avoidance For Autonomous On-Orbit Assembly (2404.07916v2)

Published 11 Apr 2024 in cs.RO, cs.SY, eess.SY, and math.OC

Abstract: The collision avoidance constraints are prominent as non-convex, non-differentiable, and challenging when defined in optimization-based motion planning problems. To overcome these issues, this paper presents a novel non-conservative collision avoidance technique using the notion of convex optimization to establish the distance between robotic spacecraft and space structures for autonomous on-orbit assembly operations. The proposed technique defines each ellipsoidal- and polyhedral-shaped object as the union of convex compact sets, each represented non-conservatively by a real-valued convex function. Then, the functions are introduced as a set of constraints to a convex optimization problem to produce a new set of differentiable constraints resulting from the optimality conditions. These new constraints are later fed into an optimal control problem to enforce collision avoidance where the motion planning for the autonomous on-orbit assembly takes place. Numerical experiments for two assembly scenarios in tight environments are presented to demonstrate the capability and effectiveness of the proposed technique. The results show that this framework leads to optimal non-conservative trajectories for robotic spacecraft in tight environments. Although developed for autonomous on-orbit assembly, this technique could be used for any generic motion planning problem where collision avoidance is crucial.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. doi:https://doi.org/10.2514/6.2016-2163.
  2. doi:https://doi.org/10.1016/j.actaastro.2022.10.018.
  3. doi:https://doi.org/10.2514/1.G003474.
  4. doi:https://doi.org/10.2514/6.2017-5248.
  5. doi:https://doi.org/10.2514/1.28865.
  6. doi:https://doi.org/10.1109/TRO.2022.3198020.
  7. doi:https://hal.science/hal-03316188.
  8. doi:https://doi.org/10.1109/AERO50100.2021.9438257.
  9. doi:https://doi.org/10.3389/frobt.2022.709905.
  10. doi:https://doi.org/10.1016/j.actaastro.2020.03.033.
  11. doi:https://doi.org/10.1002/rob.21792.
  12. doi:https://doi.org/10.2514/6.2017-1876.
  13. doi:https://doi.org/10.1016/j.ast.2017.09.043.
  14. doi:https://doi.org/10.2514/1.G002145.
  15. doi:https://doi.org/10.1016/j.actaastro.2020.02.028.
  16. doi:https://doi.org/10.1016/j.actaastro.2020.04.045.
  17. doi:https://doi.org/10.1016/j.actaastro.2018.03.027.
  18. doi:https://doi.org/10.2514/1.G003152.
  19. doi:https://doi.org/10.2514/1.G001631.
  20. doi:https://doi.org/10.2514/6.2010-7756.
  21. doi:https://doi.org/10.1109/TAES.2014.130584.
  22. doi:https://doi.org/10.2514/1.G006340.
  23. doi:https://doi.org/10.1016/j.actaastro.2020.01.006.
  24. doi:https://doi.org/10.2514/1.G004460.
  25. doi:https://doi.org/10.2514/1.G002322.
  26. doi:https://doi.org/10.2514/1.G003549.
  27. doi:https://doi.org/10.1016/j.ifacol.2015.08.093.
  28. doi:https://doi.org/10.1002/rnc.2827.
  29. doi:https://doi.org/10.1016/j.actaastro.2018.03.025.
  30. doi:https://doi.org/10.1109/TCST.2014.2379639.
  31. doi:https://doi.org/10.1016/j.automatica.2018.03.078.
  32. doi:https://doi.org/10.1016/j.automatica.2019.108508.
  33. doi:https://doi.org/10.1109/TRO.2011.2161160.
  34. doi:https://doi.org/10.1109/TIV.2019.2955362.
  35. doi:https://doi.org/10.1109/TCST.2016.2569468.
  36. doi:https://doi.org/10.1023/A:1021039126272.
  37. doi:https://doi.org/10.1109/ICRA.2015.7138978.
  38. doi:https://doi.org/10.1177/0278364914528132.
  39. doi:https://doi.org/10.1109/TCST.2019.2949540.
  40. doi:https://doi.org/10.1109/ICRA46639.2022.9812334.
  41. doi:https://doi.org/10.2514/1.G000218.
  42. doi:https://doi.org/10.1007/978-1-4471-4820-3.
  43. doi:https://doi.org/10.23919/ACC.2004.1384365.
  44. doi:https://doi.org/10.1016/j.arcontrol.2012.09.002.
  45. doi:https://doi.org/10.2514/6.2024-0958.
  46. doi:https://doi.org/10.1137/15M1020575.
  47. doi:https://doi.org/10.1007/s10107-004-0559-y.
  48. doi:https://doi.org/10.1016/j.actaastro.2022.04.038.
  49. doi:https://doi.org/10.1109/TSSC.1968.300136.
  50. doi:https://doi.org/10.1109/TCST.2012.2220773.
  51. doi:http://dx.doi.org/10.1137/1.9780898717822.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com