Beyond recognizing well-covered graphs (2404.07853v1)
Abstract: We prove a number of results related to the computational complexity of recognizing well-covered graphs. Let $k$ and $s$ be positive integers and let $G$ be a graph. Then $G$ is said - $\mathbf{W_k}$ if for any $k$ pairwise disjoint independent vertex sets $A_1, \dots, A_k$ in $G$, there exist $k$ pairwise disjoint maximum independent sets $S_1, \dots,S_k$ in $G$ such that $A_i \subseteq S_i$ for $i \in [k]$. - $\mathbf{E_s}$ if every independent set in $G$ of size at most $s$ is contained in a maximum independent set in $G$. Chv\'atal and Slater (1993) and Sankaranarayana and Stewart (1992) famously showed that recognizing $\mathbf{W_1}$ graphs or, equivalently, well-covered graphs is coNP-complete. We extend this result by showing that recognizing $\mathbf{W_{k+1}}$ graphs in either $\mathbf{W_k}$ or $\mathbf{E_s}$ graphs is coNP-complete. This answers a question of Levit and Tankus (2023) and strengthens a theorem of Feghali and Marin (2024). We also show that recognizing $\mathbf{E_{s+1}}$ graphs is $\Theta_2p$-complete even in $\mathbf{E_s}$ graphs, where $\Theta_2p = \text{P}{\text{NP}[\log]}$ is the class of problems solvable in polynomial time using a logarithmic number of calls to a SAT oracle. This strengthens a theorem of Berg\'e, Busson, Feghali and Watrigant (2023). We also obtain the complete picture of the complexity of recognizing chordal $\mathbf{W_k}$ and $\mathbf{E_s}$ graphs which, in particular, simplifies and generalizes a result of Dettlaff, Henning and Topp (2023).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.