Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Beyond recognizing well-covered graphs (2404.07853v1)

Published 11 Apr 2024 in math.CO and cs.DM

Abstract: We prove a number of results related to the computational complexity of recognizing well-covered graphs. Let $k$ and $s$ be positive integers and let $G$ be a graph. Then $G$ is said - $\mathbf{W_k}$ if for any $k$ pairwise disjoint independent vertex sets $A_1, \dots, A_k$ in $G$, there exist $k$ pairwise disjoint maximum independent sets $S_1, \dots,S_k$ in $G$ such that $A_i \subseteq S_i$ for $i \in [k]$. - $\mathbf{E_s}$ if every independent set in $G$ of size at most $s$ is contained in a maximum independent set in $G$. Chv\'atal and Slater (1993) and Sankaranarayana and Stewart (1992) famously showed that recognizing $\mathbf{W_1}$ graphs or, equivalently, well-covered graphs is coNP-complete. We extend this result by showing that recognizing $\mathbf{W_{k+1}}$ graphs in either $\mathbf{W_k}$ or $\mathbf{E_s}$ graphs is coNP-complete. This answers a question of Levit and Tankus (2023) and strengthens a theorem of Feghali and Marin (2024). We also show that recognizing $\mathbf{E_{s+1}}$ graphs is $\Theta_2p$-complete even in $\mathbf{E_s}$ graphs, where $\Theta_2p = \text{P}{\text{NP}[\log]}$ is the class of problems solvable in polynomial time using a logarithmic number of calls to a SAT oracle. This strengthens a theorem of Berg\'e, Busson, Feghali and Watrigant (2023). We also obtain the complete picture of the complexity of recognizing chordal $\mathbf{W_k}$ and $\mathbf{E_s}$ graphs which, in particular, simplifies and generalizes a result of Dettlaff, Henning and Topp (2023).

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.