Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

EKF-SINDy: Empowering the extended Kalman filter with sparse identification of nonlinear dynamics (2404.07536v2)

Published 11 Apr 2024 in math.DS, cs.SY, and eess.SY

Abstract: Measured data from a dynamical system can be assimilated into a predictive model by means of Kalman filters. Nonlinear extensions of the Kalman filter, such as the Extended Kalman Filter (EKF), are required to enable the joint estimation of (possibly nonlinear) system dynamics and of input parameters. To construct the evolution model used in the prediction phase of the EKF, we propose to rely on the Sparse Identification of Nonlinear Dynamics (SINDy). SINDy enables to identify the evolution model directly from preliminary acquired data, thus avoiding possible bias due to wrong assumptions and incorrect modelling of the system dynamics. Moreover, the numerical integration of a SINDy model leads to great computational savings compared to alternate strategies based on, e.g., finite elements. Last, SINDy allows an immediate definition of the Jacobian matrices required by the EKF to identify system dynamics and properties, a derivation that is usually extremely involved with physical models. As a result, combining the EKF with SINDy provides a data-driven computationally efficient, easy-to-apply approach for the identification of nonlinear systems, capable of robust operation even outside the range of training of SINDy. To demonstrate the potential of the approach, we address the identification of a linear non-autonomous system consisting of a shear building model excited by real seismograms, and the identification of a partially observed nonlinear system. The challenge arising from the use of SINDy when the system state is not entirely accessible has been relieved by means of time-delay embedding. The great accuracy and the small uncertainty associated with the state identification, where the state has been augmented to include system properties, underscores the great potential of the proposed strategy, paving the way for the setting of predictive digital twins in different fields.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. doi:10.1115/1.4046739.
  2. doi:10.1016/j.cma.2023.116584.
  3. doi:10.1140/epje/s10189-023-00285-8.
  4. doi:10.1126/science.aaa8415.
  5. doi:10.1073/pnas.1517384113.
  6. doi:10.1016/j.cma.2021.114079.
  7. doi:https://doi.org/10.31224/3500.
  8. doi:10.1115/1.3662552.
  9. doi:10.1109/ASSPCC.2000.882463.
  10. doi:10.1038/s41467-017-00030-8.
  11. doi:https://doi.org/10.1016/j.cma.2023.116072.
  12. doi:10.1109/ICCV.2017.589.
  13. doi:10.1177/14759217231179912.
  14. doi:10.1098/rspa.2018.0335.
  15. doi:10.23919/ACC53348.2022.9867786.
  16. doi:10.1007/s11071-024-09333-0.
  17. doi:10.1016/j.compstruc.2021.106604.
  18. doi:10.1007/978-3-030-70787-3_16.
  19. doi:10.1016/j.cherd.2023.07.011.
  20. doi:10.1061/AJRUA6.RUENG-1085.
  21. doi:10.1137/18M1188227.
  22. doi:10.1002/0470045345.ch13.
  23. doi:10.1002/9781119053828.ch4.
  24. doi:10.1177/058310249803000201.
  25. doi:10.1002/0470045345.ch5.
  26. doi:10.1016/j.jcp.2021.110525.
  27. doi:10.1098/rspa.2021.0904.
  28. doi:10.1098/rsos.211823.
  29. arXiv:2301.12649.
  30. doi:10.1016/j.cma.2005.01.007.
  31. doi:10.3389/fbuil.2019.00127.
  32. doi:10.1016/j.ymssp.2015.02.001.
  33. doi:10.1016/j.ymssp.2019.02.040.
  34. doi:10.1016/j.ymssp.2020.106779.
  35. doi:10.1111/mice.12973.
  36. doi:10.1109/ACCESS.2019.2947848.
  37. doi:10.1109/JSEN.2018.2850065.
  38. doi:10.21105/joss.03994.
  39. doi:10.1002/stc.1690.
  40. doi:10.1016/j.cmpb.2007.07.002.
  41. doi:10.1109/IWASI.2017.7974238.
  42. doi:10.1016/S1474-6670(17)34655-4.
  43. doi:10.1007/s00202-014-0322-1.
  44. doi:10.1038/s41598-021-95793-y.
  45. doi:10.1103/PhysRevE.105.015312.
  46. doi:10.1002/9780470725184.ch2.
  47. doi:10.1007/978-3-030-81716-9_8.
  48. doi:10.1016/j.compstruc.2022.106790.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.