Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks (2404.07464v1)

Published 11 Apr 2024 in cs.CR

Abstract: Network intrusion detection systems (NIDS) play a pivotal role in safeguarding critical digital infrastructures against cyber threats. Machine learning-based detection models applied in NIDS are prevalent today. However, the effectiveness of these machine learning-based models is often limited by the evolving and sophisticated nature of intrusion techniques as well as the lack of diverse and updated training samples. In this research, a novel approach for enhancing the performance of an NIDS through the integration of Generative Adversarial Networks (GANs) is proposed. By harnessing the power of GANs in generating synthetic network traffic data that closely mimics real-world network behavior, we address a key challenge associated with NIDS training datasets, which is the data scarcity. Three distinct GAN models (Vanilla GAN, Wasserstein GAN and Conditional Tabular GAN) are implemented in this work to generate authentic network traffic patterns specifically tailored to represent the anomalous activity. We demonstrate how this synthetic data resampling technique can significantly improve the performance of the NIDS model for detecting such activity. By conducting comprehensive experiments using the CIC-IDS2017 benchmark dataset, augmented with GAN-generated data, we offer empirical evidence that shows the effectiveness of our proposed approach. Our findings show that the integration of GANs into NIDS can lead to enhancements in intrusion detection performance for attacks with limited training data, making it a promising avenue for bolstering the cybersecurity posture of organizations in an increasingly interconnected and vulnerable digital landscape.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube