Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Near Optimal Alphabet-Soundness Tradeoff PCPs (2404.07441v1)

Published 11 Apr 2024 in cs.CC and cs.DS

Abstract: We show that for all $\varepsilon>0$, for sufficiently large prime power $q$, for all $\delta>0$, it is NP-hard to distinguish whether a 2-Prover-1-Round projection game with alphabet size $q$ has value at least $1-\delta$, or value at most $1/q{(1-\epsilon)}$. This establishes a nearly optimal alphabet-to-soundness tradeoff for 2-query PCPs with alphabet size $q$, improving upon a result of [Chan 2016]. Our result has the following implications: 1) Near optimal hardness for Quadratic Programming: it is NP-hard to approximate the value of a given Boolean Quadratic Program within factor $(\log n){(1 - o(1))}$ under quasi-polynomial time reductions. This result improves a result of [Khot-Safra 2013] and nearly matches the performance of the best known approximation algorithm [Megrestki 2001, Nemirovski-Roos-Terlaky 1999 Charikar-Wirth 2004] that achieves a factor of $O(\log n)$. 2) Bounded degree 2-CSP's: under randomized reductions, for sufficiently large $d>0$, it is NP-hard to approximate the value of 2-CSPs in which each variable appears in at most d constraints within factor $(1-o(1))d/2$ improving upon a recent result of [Lee-Manurangsi 2023]. 3) Improved hardness results for connectivity problems: using results of [Laekhanukit 2014] and [Manurangsi 2019], we deduce improved hardness results for the Rooted $k$-Connectivity Problem, the Vertex-Connectivity Survivable Network Design Problem and the Vertex-Connectivity $k$-Route Cut Problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube