Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Neural Networks to Model Hysteretic Kinematics in Tendon-Actuated Continuum Robots (2404.07168v1)

Published 10 Apr 2024 in cs.RO and cs.AI

Abstract: The ability to accurately model mechanical hysteretic behavior in tendon-actuated continuum robots using deep learning approaches is a growing area of interest. In this paper, we investigate the hysteretic response of two types of tendon-actuated continuum robots and, ultimately, compare three types of neural network modeling approaches with both forward and inverse kinematic mappings: feedforward neural network (FNN), FNN with a history input buffer, and long short-term memory (LSTM) network. We seek to determine which model best captures temporal dependent behavior. We find that, depending on the robot's design, choosing different kinematic inputs can alter whether hysteresis is exhibited by the system. Furthermore, we present the results of the model fittings, revealing that, in contrast to the standard FNN, both FNN with a history input buffer and the LSTM model exhibit the capacity to model historical dependence with comparable performance in capturing rate-dependent hysteresis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. P. E. Dupont, J. Lock, B. Itkowitz, and D. Butler, “Design and Control of Concentric-Tube Robots,” IEEE Trans Robot, vol. 26, no. 2, pp. 209–225, 2010, doi: 10.1109/TRO.2009.2035740.
  2. P. Rao, Q. Peyron, S. Lilge, and J. Burgner-Kahrs, “How to model tendon-driven continuum robots and benchmark modelling performance,” Frontiers in Robotics and AI, vol. 7, 02 2021, doi: 10.3389/frobt.2020.630245.
  3. J. Ha and P. E. Dupont, “Incorporating tube-to-tube clearances in the kinematics of concentric tube robots,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 6730–6736, doi: 10.1109/ICRA.2017.7989797.
  4. J. Ha, G. Fagogenis, and P. E. Dupont, “Modeling tube clearance and bounding the effect of friction in concentric tube robot kinematics,” IEEE Transactions on Robotics, vol. 35, no. 2, pp. 353–370, 2019, doi: 10.1109/TRO.2018.2878906.
  5. J. Ha, G. Fagogenis, and P. Dupont, “Effect of path history on concentric tube robot model calibration,” in The Hamlyn Symposium on Medical Robotics, 2017, p. 77.
  6. J. Wang, J. Peine, and P. E. Dupont, “Eccentric Tube Robots as Multiarmed Steerable Sheaths,” IEEE Trans. Robotics, vol. 38, no. 1, pp. 477–490, 2022.
  7. Z. Mitros, S. M. H. Sadati, S. Nousias, L. Da Cruz, and C. Bergeles, “Design and Quasistatic Modelling of Hybrid Continuum Multi-Arm Robots,” 2022 International Conference on Robotics and Automation (ICRA), pp. 9607–9613, 2022, doi: 10.1109/ICRA46639.2022.9811897.
  8. Y. Chitalia, A. Donder, and P. Dupont, “Modeling Tendon-actuated Concentric Tube Robots,” International Symposium on Medical Robotics (ISMR), 2023.
  9. G. Fagogenis, C. Bergeles, and P. E. Dupont, “Adaptive Nonparametric Kinematic Modeling of Concentric Tube Robots,” IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2016.
  10. V. Hassani, T. Tjahjowidodo, and T. N. Do, “A survey on hysteresis modeling, identification and control,” Mechanical Systems and Signal Processing, vol. 49, no. 1, pp. 209–233, 2014.
  11. S. Zhang, M. Wang, P. Zheng, G. Qiao, F. Liu, and L. Gan, “An easy-to-implement hysteresis model identification method based on support vector regression,” IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1–4, 2017.
  12. A. Kuntz, A. Sethi, R. J. Webster, and R. Alterovitz, “Learning the Complete Shape of Concentric Tube Robots,” EEE Trans Med Robot Bionics, pp. 140–147, 2020, doi: 10.1109/tmrb.2020.2974523.
  13. H. Jianxiong, J. Duan, K. Wang, C. Hu, and C. Shi, “Inverse kinematic modeling of the tendon-actuated medical continuum manipulator based on a lightweight timing input neural network,” IEEE Transactions on Medical Robotics and Bionics, vol. PP, pp. 1–1, 11 2023.
  14. D. M. Ahmed, M. M. Hassan, and R. J. Mstafa, “A review on deep sequential models for forecasting time series data,” Applied Computational Intelligence and Soft Computing, vol. 2022, p. 6596397, 2022.
  15. Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent neural networks for sequence learning,” arXiv preprint arXiv:1506.00019, 2015.
  16. R. Grassmann, V. Modes, and J. Burgner-Kahrs, “Learning the forward and inverse kinematics of a 6-dof concentric tube continuum robot in se(3),” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 5125–5132.
  17. R. M. Grassmann, R. Z. Chen, N. Liang, and J. Burgner-Kahrs, “A dataset and benchmark for learning the kinematics of concentric tube continuum robots,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 9550–9557.
  18. S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 11 1997.
  19. K. Choi, J. Kwon, T. Lee, C. Park, J. Pyo, C. Lee, S. Lee, I. Kim, S. Seok, Y.-J. Kim, and F. C. Park, “A hybrid dynamic model for the ambidex tendon-driven manipulator,” Mechatronics, vol. 69, p. 102398, 2020.
  20. X. Li, L. Cao, A. M. H. Tiong, P. T. Phan, and S. J. Phee, “Distal-end force prediction of tendon-sheath mechanisms for flexible endoscopic surgical robots using deep learning,” Mechanism and Machine Theory, vol. 134, pp. 323–337, 2019.
  21. D. Wu, Y. Zhang, M. Ourak, K. Niu, J. Dankelman, and E. V. Poorten, “Hysteresis modeling of robotic catheters based on long short-term memory network for improved environment reconstruction,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2106–2113, 2021.
  22. D. Kim, H. Kim, and S. Jin, “Recurrent neural network with preisach model for configuration-specific hysteresis modeling of tendon-sheath mechanism,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2763–2770, 2022.
  23. T.-D. Nguyen and J. Burgner-Kahrs, “A tendon-driven continuum robot with extensible sections,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 2130–2135, doi: 10.1109/IROS.2015.7353661.
Citations (2)

Summary

We haven't generated a summary for this paper yet.