Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Topological Feature Search Method for Multichannel EEG: Application in ADHD classification (2404.06676v2)

Published 10 Apr 2024 in cs.LG, eess.SP, and stat.AP

Abstract: In recent years, the preliminary diagnosis of ADHD using EEG has attracted the attention from researchers. EEG, known for its expediency and efficiency, plays a pivotal role in the diagnosis and treatment of ADHD. However, the non-stationarity of EEG signals and inter-subject variability pose challenges to the diagnostic and classification processes. Topological Data Analysis offers a novel perspective for ADHD classification, diverging from traditional time-frequency domain features. However, conventional TDA models are restricted to single-channel time series and are susceptible to noise, leading to the loss of topological features in persistence diagrams.This paper presents an enhanced TDA approach applicable to multi-channel EEG in ADHD. Initially, optimal input parameters for multi-channel EEG are determined. Subsequently, each channel's EEG undergoes phase space reconstruction (PSR) followed by the utilization of k-Power Distance to Measure for approximating ideal point clouds. Then, multi-dimensional time series are re-embedded, and TDA is applied to obtain topological feature information. Gaussian function-based Multivariate Kernel Density Estimation is employed in the merger persistence diagram to filter out desired topological feature mappings. Finally, the persistence image method is employed to extract topological features, and the influence of various weighting functions on the results is discussed.The effectiveness of our method is evaluated using the IEEE ADHD dataset. Results demonstrate that the accuracy, sensitivity, and specificity reach 78.27%, 80.62%, and 75.63%, respectively. Compared to traditional TDA methods, our method was effectively improved and outperforms typical nonlinear descriptors. These findings indicate that our method exhibits higher precision and robustness.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube