Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Convergence analysis of novel discontinuous Galerkin methods for a convection dominated problem (2404.06490v1)

Published 9 Apr 2024 in math.NA and cs.NA

Abstract: In this paper, we propose and analyze a numerically stable and convergent scheme for a convection-diffusion-reaction equation in the convection-dominated regime. Discontinuous Galerkin (DG) methods are considered since standard finite element methods for the convection-dominated equation cause spurious oscillations. We choose to follow a novel DG finite element differential calculus framework introduced in Feng et al. (2016) and approximate the infinite-dimensional operators in the equation with the finite-dimensional DG differential operators. Specifically, we construct the numerical method by using the dual-wind discontinuous Galerkin (DWDG) formulation for the diffusive term and the average discrete gradient operator for the convective term along with standard DG stabilization. We prove that the method converges optimally in the convection-dominated regime. Numerical results are provided to support the theoretical findings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.