Papers
Topics
Authors
Recent
2000 character limit reached

Convergence analysis of novel discontinuous Galerkin methods for a convection dominated problem (2404.06490v1)

Published 9 Apr 2024 in math.NA and cs.NA

Abstract: In this paper, we propose and analyze a numerically stable and convergent scheme for a convection-diffusion-reaction equation in the convection-dominated regime. Discontinuous Galerkin (DG) methods are considered since standard finite element methods for the convection-dominated equation cause spurious oscillations. We choose to follow a novel DG finite element differential calculus framework introduced in Feng et al. (2016) and approximate the infinite-dimensional operators in the equation with the finite-dimensional DG differential operators. Specifically, we construct the numerical method by using the dual-wind discontinuous Galerkin (DWDG) formulation for the diffusive term and the average discrete gradient operator for the convective term along with standard DG stabilization. We prove that the method converges optimally in the convection-dominated regime. Numerical results are provided to support the theoretical findings.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.