Emergent Mind

Abstract

Medical multi-modal pre-training has revealed promise in computer-aided diagnosis by leveraging large-scale unlabeled datasets. However, existing methods based on masked autoencoders mainly rely on data-level reconstruction tasks, but lack high-level semantic information. Furthermore, two significant heterogeneity challenges hinder the transfer of pre-trained knowledge to downstream tasks, \textit{i.e.}, the distribution heterogeneity between pre-training data and downstream data, and the modality heterogeneity within downstream data. To address these challenges, we propose a Unified Medical Multi-modal Diagnostic (UMD) framework with tailored pre-training and downstream tuning strategies. Specifically, to enhance the representation abilities of vision and language encoders, we propose the Multi-level Reconstruction Pre-training (MR-Pretrain) strategy, including a feature-level and data-level reconstruction, which guides models to capture the semantic information from masked inputs of different modalities. Moreover, to tackle two kinds of heterogeneities during the downstream tuning, we present the heterogeneity-combat downstream tuning strategy, which consists of a Task-oriented Distribution Calibration (TD-Calib) and a Gradient-guided Modality Coordination (GM-Coord). In particular, TD-Calib fine-tunes the pre-trained model regarding the distribution of downstream datasets, and GM-Coord adjusts the gradient weights according to the dynamic optimization status of different modalities. Extensive experiments on five public medical datasets demonstrate the effectiveness of our UMD framework, which remarkably outperforms existing approaches on three kinds of downstream tasks.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.