Low-rank generalized alternating direction implicit iteration method for solving matrix equations (2404.06034v1)
Abstract: This paper presents an effective low-rank generalized alternating direction implicit iteration (R-GADI) method for solving large-scale sparse and stable Lyapunov matrix equations and continuous-time algebraic Riccati matrix equations. The method is based on generalized alternating direction implicit iteration (GADI), which exploits the low-rank property of matrices and utilizes the Cholesky factorization approach for solving. The advantage of the new algorithm lies in its direct and efficient low-rank formulation, which is a variant of the Cholesky decomposition in the Lyapunov GADI method, saving storage space and making it computationally effective. When solving the continuous-time algebraic Riccati matrix equation, the Riccati equation is first simplified to a Lyapunov equation using the Newton method, and then the R-GADI method is employed for computation. Additionally, we analyze the convergence of the R-GADI method and prove its consistency with the convergence of the GADI method. Finally, the effectiveness of the new algorithm is demonstrated through corresponding numerical experiments.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.