Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the robustness of double-word addition algorithms (2404.05948v2)

Published 9 Apr 2024 in math.NA and cs.NA

Abstract: We demonstrate that, even when there are moderate overlaps in the inputs of sloppy or accurate double-word addition algorithms in the QD library, these algorithms still guarantee error bounds of $O(u2(|a|+|b|))$ in faithful rounding. Furthermore, the accurate algorithm can achieve a relative error bound of $O(u2)$ in the presence of moderate overlaps in the inputs when rounding function is round-to-nearest. The relative error bound also holds in directed rounding, but certain additional conditions are required. Consequently, in double-word multiplication and addition operations, we can safely omit the normalization step of double-word multiplication and replace the accurate addition algorithm with the sloppy one. Numerical experiments confirm that this approach nearly doubles the performance of double-word multiplication and addition operations, with negligible precision costs. Moreover, in directed rounding mode, the signs of the errors of the two algorithms are consistent with the rounding direction, even in the presence of input overlap. This allows us to avoid changing the rounding mode in interval arithmetic. We also prove that the relative error bound of the sloppy addition algorithm exceeds $3u2$ if and only if the input meets the condition of Sterbenz's Lemma when rounding to nearest. These findings suggest that the two addition algorithms are more robust than previously believed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.