Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the robustness of double-word addition algorithms (2404.05948v2)

Published 9 Apr 2024 in math.NA and cs.NA

Abstract: We demonstrate that, even when there are moderate overlaps in the inputs of sloppy or accurate double-word addition algorithms in the QD library, these algorithms still guarantee error bounds of $O(u2(|a|+|b|))$ in faithful rounding. Furthermore, the accurate algorithm can achieve a relative error bound of $O(u2)$ in the presence of moderate overlaps in the inputs when rounding function is round-to-nearest. The relative error bound also holds in directed rounding, but certain additional conditions are required. Consequently, in double-word multiplication and addition operations, we can safely omit the normalization step of double-word multiplication and replace the accurate addition algorithm with the sloppy one. Numerical experiments confirm that this approach nearly doubles the performance of double-word multiplication and addition operations, with negligible precision costs. Moreover, in directed rounding mode, the signs of the errors of the two algorithms are consistent with the rounding direction, even in the presence of input overlap. This allows us to avoid changing the rounding mode in interval arithmetic. We also prove that the relative error bound of the sloppy addition algorithm exceeds $3u2$ if and only if the input meets the condition of Sterbenz's Lemma when rounding to nearest. These findings suggest that the two addition algorithms are more robust than previously believed.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube