On the Fly Robotic-Assisted Medical Instrument Planning and Execution Using Mixed Reality (2404.05887v1)
Abstract: Robotic-assisted medical systems (RAMS) have gained significant attention for their advantages in alleviating surgeons' fatigue and improving patients' outcomes. These systems comprise a range of human-computer interactions, including medical scene monitoring, anatomical target planning, and robot manipulation. However, despite its versatility and effectiveness, RAMS demands expertise in robotics, leading to a high learning cost for the operator. In this work, we introduce a novel framework using mixed reality technologies to ease the use of RAMS. The proposed framework achieves real-time planning and execution of medical instruments by providing 3D anatomical image overlay, human-robot collision detection, and robot programming interface. These features, integrated with an easy-to-use calibration method for head-mounted display, improve the effectiveness of human-robot interactions. To assess the feasibility of the framework, two medical applications are presented in this work: 1) coil placement during transcranial magnetic stimulation and 2) drill and injector device positioning during femoroplasty. Results from these use cases demonstrate its potential to extend to a wider range of medical scenarios.
- J. Klodmann, C. Schlenk, A. Hellings-Kuß, T. Bahls, R. Unterhinninghofen, A. Albu-Schäffer, and G. Hirzinger, “An introduction to robotically assisted surgical systems: Current developments and focus areas of research,” Current Robotics Reports, vol. 2, no. 3, pp. 321–332, 2021.
- H. H. Hassanalideh and S. Gholampour, “Finding the optimal drill bit material and proper drilling condition for utilization in the programming of robot-assisted drilling of bone,” CIRP Journal of Manufacturing Science and Technology, vol. 31, pp. 34–47, 2020.
- N. Sugano, “Computer-assisted orthopaedic surgery and robotic surgery in total hip arthroplasty,” Clinics in orthopedic surgery, vol. 5, no. 1, pp. 1–9, 2013.
- M. Zhou, Q. Yu, K. Huang, S. Mahov, A. Eslami, M. Maier, C. P. Lohmann, N. Navab, D. Zapp, A. Knoll, et al., “Towards robotic-assisted subretinal injection: A hybrid parallel–serial robot system design and preliminary evaluation,” IEEE Transactions on Industrial Electronics, vol. 67, no. 8, pp. 6617–6628, 2019.
- Z. Qi, Y. Li, X. Xu, J. Zhang, F. Li, Z. Gan, R. Xiong, Q. Wang, S. Zhang, and X. Chen, “Holographic mixed-reality neuronavigation with a head-mounted device: technical feasibility and clinical application,” Neurosurgical Focus, vol. 51, no. 2, p. E22, 2021.
- S. Skyrman, M. Lai, E. Edström, G. Burström, P. Förander, R. Homan, F. Kor, R. Holthuizen, B. H. Hendriks, O. Persson, et al., “Augmented reality navigation for cranial biopsy and external ventricular drain insertion,” Neurosurgical Focus, vol. 51, no. 2, p. E7, 2021.
- L. Qian, J. Y. Wu, S. P. DiMaio, N. Navab, and P. Kazanzides, “A review of augmented reality in robotic-assisted surgery,” IEEE Transactions on Medical Robotics and Bionics, vol. 2, no. 1, pp. 1–16, 2019.
- R. Wen, L. Yang, C.-K. Chui, K.-B. Lim, and S. Chang, “Intraoperative visual guidance and control interface for augmented reality robotic surgery,” in IEEE ICCA 2010. IEEE, 2010, pp. 947–952.
- R. Wen, C.-B. Chng, C.-K. Chui, K.-B. Lim, S.-H. Ong, and S. K.-Y. Chang, “Robot-assisted rf ablation with interactive planning and mixed reality guidance,” in 2012 IEEE/SICE International Symposium on System Integration (SII), 2012, pp. 31–36.
- R. Wen, W.-L. Tay, B. P. Nguyen, C.-B. Chng, and C.-K. Chui, “Hand gesture guided robot-assisted surgery based on a direct augmented reality interface,” Computer Methods and Programs in Biomedicine, vol. 116, no. 2, pp. 68–80, 2014, new methods of human-robot interaction in medical practice.
- R. Wen, B. P. Nguyen, C.-B. Chng, and C.-K. Chui, “In situ spatial ar surgical planning using projector-kinect system,” in Proceedings of the 4th Symposium on Information and Communication Technology, ser. SoICT ’13. New York, NY, USA: Association for Computing Machinery, 2013, p. 164–171.
- S. Y. Gadre, E. Rosen, G. Chien, E. Phillips, S. Tellex, and G. Konidaris, “End-user robot programming using mixed reality,” in 2019 International conference on robotics and automation (ICRA). IEEE, 2019, pp. 2707–2713.
- M. Ostanin, S. Mikhel, A. Evlampiev, V. Skvortsova, and A. Klimchik, “Human-robot interaction for robotic manipulator programming in mixed reality,” in 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 2805–2811.
- M. Q. Tram, J. M. Cloud, and W. J. Beksi, “Intuitive robot integration via virtual reality workspaces,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 11 654–11 660.
- J. Krieglstein, G. Held, B. A. Bálint, F. Nägele, and W. Kraus, “Skill-based robot programming in mixed reality with ad-hoc validation using a force-enabled digital twin,” in 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023, pp. 11 612–11 618.
- J. Fu, M. C. Palumbo, E. Iovene, Q. Liu, I. Burzo, A. Redaelli, G. Ferrigno, and E. De Momi, “Augmented reality-assisted robot learning framework for minimally invasive surgery task,” in 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023, pp. 11 647–11 653.
- E. Rosen, D. Whitney, E. Phillips, G. Chien, J. Tompkin, G. Konidaris, and S. Tellex, “Communicating robot arm motion intent through mixed reality head-mounted displays,” in Robotics Research: The 18th International Symposium ISRR. Springer, 2020, pp. 301–316.
- U. Gruenefeld, L. Prädel, J. Illing, T. Stratmann, S. Drolshagen, and M. Pfingsthorn, “Mind the arm: realtime visualization of robot motion intent in head-mounted augmented reality,” in Proceedings of Mensch und Computer 2020, 2020, pp. 259–266.
- G. Bolano, Y. Fu, A. Roennau, and R. Dillmann, “Deploying multi-modal communication using augmented reality in a shared workspace,” in 2021 18th International Conference on Ubiquitous Robots (UR). IEEE, 2021, pp. 302–307.
- J. Elsdon and Y. Demiris, “Augmented reality for feedback in a shared control spraying task,” in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 1939–1946.
- E. Azimi, L. Qian, N. Navab, and P. Kazanzides, “Alignment of the virtual scene to the tracking space of a mixed reality head-mounted display,” arXiv preprint arXiv:1703.05834, 2017.
- A. Martin-Gomez, H. Li, T. Song, S. Yang, G. Wang, H. Ding, N. Navab, Z. Zhao, and M. Armand, “Sttar: surgical tool tracking using off-the-shelf augmented reality head-mounted displays,” IEEE Transactions on Visualization and Computer Graphics, 2023.
- A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, et al., “3d slicer as an image computing platform for the quantitative imaging network,” Magnetic resonance imaging, vol. 30, no. 9, pp. 1323–1341, 2012.
- P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia, “MeshLab: an Open-Source Mesh Processing Tool,” in Eurographics Italian Chapter Conference, V. Scarano, R. D. Chiara, and U. Erra, Eds. The Eurographics Association, 2008.
- Y. Liu, A. Kheradmand, and M. Armand, “Toward process controlled medical robotic system,” arXiv preprint arXiv:2308.05809, 2023.
- Y. Liu, S. J. Liu, S. Sefati, T. Jing, A. Kheradmand, and M. Armand, “Inside-out tracking and projection mapping for robot-assisted transcranial magnetic stimulation,” in Optical architectures for displays and sensing in augmented, virtual, and mixed reality (AR, VR, MR) III, vol. 11931. SPIE, 2022, pp. 57–70.
- D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the barrier to entry of complex robotic software: a moveit! case study,” arXiv preprint arXiv:1404.3785, 2014.
- K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-D point sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9, no. 5, pp. 698–700, 1987.
- P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor fusion IV: control paradigms and data structures, vol. 1611. Spie, 1992, pp. 586–606.
- C. Maurer, J. Fitzpatrick, M. Wang, R. Galloway, R. Maciunas, and G. Allen, “Registration of head volume images using implantable fiducial markers,” IEEE Trans. on Medical Imaging, vol. 16, no. 4, pp. 447–462, Aug 1997.
- Y. Liu, J. Zhang, Z. She, A. Kheradmand, and M. Armand, “Gbec: Geometry-based hand-eye calibration,” In press, accepted for publication in: The 2024 IEEE International Conference on Robotics and Automation (ICRA2024).
- A. Keller, “Hololens 2 infrared retro-reflector tracking,” https://github.com/andreaskeller96/HoloLens2-IRTracking, 2023.
- G. Fattori, A. J. Lomax, D. C. Weber, and S. Safai, “Technical assessment of the ndi polaris vega optical tracking system,” Radiation oncology, vol. 16, no. 1, pp. 1–4, 2021.
- D. Ungureanu, F. Bogo, S. Galliani, P. Sama, X. Duan, C. Meekhof, J. Stühmer, T. J. Cashman, B. Tekin, J. L. Schönberger, et al., “Hololens 2 research mode as a tool for computer vision research,” arXiv preprint arXiv:2008.11239, 2020.
- A. T. Barker, R. Jalinous, and I. L. Freeston, “Non-invasive magnetic stimulation of human motor cortex,” The Lancet, vol. 325, no. 8437, pp. 1106–1107, 1985.
- D. E. Bohning, A. Shastri, Z. Nahas, J. P. Lorberbaum, S. W. Andersen, W. R. Dannels, E.-U. Haxthausen, D. J. Vincent, and M. S. George, “Echoplanar bold fmri of brain activation induced by concurrent transcranial magnetic stimulation,” Investigative radiology, vol. 33, no. 6, pp. 336–340, 1998.
- A. Chail, R. K. Saini, P. Bhat, K. Srivastava, and V. Chauhan, “Transcranial magnetic stimulation: a review of its evolution and current applications,” Industrial psychiatry journal, vol. 27, no. 2, p. 172, 2018.
- V. Di Lazzaro, R. Bella, A. Benussi, M. Bologna, B. Borroni, F. Capone, K.-H. S. Chen, R. Chen, A. V. Chistyakov, J. Classen, M. C. Kiernan, G. Koch, G. Lanza, J.-P. Lefaucheur, H. Matsumoto, J.-P. Nguyen, M. Orth, A. Pascual-Leone, I. Rektorova, P. Simko, J.-P. Taylor, S. Tremblay, Y. Ugawa, R. Dubbioso, and F. Ranieri, “Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia,” Clinical Neurophysiology, vol. 132, no. 10, pp. 2568–2607, 2021.
- S. Harquel, J. Diard, E. Raffin, B. Passera, G. Dall’Igna, C. Marendaz, O. David, and A. Chauvin, “Automatized set-up procedure for transcranial magnetic stimulation protocols,” Neuroimage, vol. 153, pp. 307–318, 2017.
- A. Noccaro, A. Mioli, M. D’Alonzo, M. Pinardi, G. Di Pino, and D. Formica, “Development and validation of a novel calibration methodology and control approach for robot-aided transcranial magnetic stimulation (tms),” IEEE Transactions on Biomedical Engineering, vol. 68, no. 5, pp. 1589–1600, 2021.
- J. Beckmann, S. J. Ferguson, M. Gebauer, C. Luering, B. Gasser, and P. Heini, “Femoroplasty–augmentation of the proximal femur with a composite bone cement–feasibility, biomechanical properties and osteosynthesis potential,” Medical engineering & physics, vol. 29, no. 7, pp. 755–764, 2007.
- E. G. Sutter, S. C. Mears, and S. M. Belkoff, “A biomechanical evaluation of femoroplasty under simulated fall conditions,” Journal of orthopaedic trauma, vol. 24, no. 2, p. 95, 2010.
- J. Beckmann, R. Springorum, E. Vettorazzi, S. Bachmeier, C. Lüring, M. Tingart, K. Püschel, O. Stark, J. Grifka, T. Gehrke, et al., “Fracture prevention by femoroplasty—cement augmentation of the proximal femur,” Journal of Orthopaedic Research, vol. 29, no. 11, pp. 1753–1758, 2011.
- A. Farvardin, E. Basafa, M. Bakhtiarinejad, and M. Armand, “Significance of preoperative planning for prophylactic augmentation of osteoporotic hip: A computational modeling study,” Journal of biomechanics, vol. 94, pp. 75–81, 2019.
- E. Basafa, R. J. Murphy, Y. Otake, M. D. Kutzer, S. M. Belkoff, S. C. Mears, and M. Armand, “Subject-specific planning of femoroplasty: an experimental verification study,” Journal of biomechanics, vol. 48, no. 1, pp. 59–64, 2015.
- A. Farvardin, M. Bakhtiarinejad, R. J. Murphy, E. Basafa, H. Khanuja, J. K. Oni, and M. Armand, “A biomechanically-guided planning and execution paradigm for osteoporotic hip augmentation: Experimental evaluation of the biomechanics and temperature-rise,” Clinical Biomechanics, vol. 87, p. 105392, 2021.
- M. Bakhtiarinejad, C. Gao, A. Farvardin, G. Zhu, Y. Wang, J. K. Oni, R. H. Taylor, and M. Armand, “A surgical robotic system for osteoporotic hip augmentation: System development and experimental evaluation,” IEEE Transactions on Medical Robotics and Bionics, vol. 5, no. 1, pp. 18–29, 2023.
- Letian Ai (2 papers)
- Yihao Liu (85 papers)
- Mehran Armand (51 papers)
- Amir Kheradmand (7 papers)
- Alejandro Martin-Gomez (9 papers)