Papers
Topics
Authors
Recent
2000 character limit reached

Language-Independent Representations Improve Zero-Shot Summarization (2404.05720v1)

Published 8 Apr 2024 in cs.CL and cs.AI

Abstract: Finetuning pretrained models on downstream generation tasks often leads to catastrophic forgetting in zero-shot conditions. In this work, we focus on summarization and tackle the problem through the lens of language-independent representations. After training on monolingual summarization, we perform zero-shot transfer to new languages or language pairs. We first show naively finetuned models are highly language-specific in both output behavior and internal representations, resulting in poor zero-shot performance. Next, we propose query-key (QK) finetuning to decouple task-specific knowledge from the pretrained language generation abilities. Then, after showing downsides of the standard adversarial language classifier, we propose a balanced variant that more directly enforces language-agnostic representations. Moreover, our qualitative analyses show removing source language identity correlates to zero-shot summarization performance. Our code is openly available.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.