Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Even Faster Knapsack via Rectangular Monotone Min-Plus Convolution and Balancing (2404.05681v2)

Published 8 Apr 2024 in cs.DS

Abstract: We present a pseudopolynomial-time algorithm for the Knapsack problem that has running time $\widetilde{O}(n + t\sqrt{p_{\max}})$, where $n$ is the number of items, $t$ is the knapsack capacity, and $p_{\max}$ is the maximum item profit. This improves over the $\widetilde{O}(n + t \, p_{\max})$-time algorithm based on the convolution and prediction technique by Bateni et al.~(STOC 2018). Moreover, we give some evidence, based on a strengthening of the Min-Plus Convolution Hypothesis, that our running time might be optimal. Our algorithm uses two new technical tools, which might be of independent interest. First, we generalize the $\widetilde{O}(n{1.5})$-time algorithm for bounded monotone min-plus convolution by Chi et al.~(STOC 2022) to the \emph{rectangular} case where the range of entries can be different from the sequence length. Second, we give a reduction from general knapsack instances to \emph{balanced} instances, where all items have nearly the same profit-to-weight ratio, up to a constant factor. Using these techniques, we can also obtain algorithms that run in time $\widetilde{O}(n + OPT\sqrt{w_{\max}})$, $\widetilde{O}(n + (nw_{\max}p_{\max}){1/3}t{2/3})$, and $\widetilde{O}(n + (nw_{\max}p_{\max}){1/3} OPT{2/3})$, where $OPT$ is the optimal total profit and $w_{\max}$ is the maximum item weight.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195–208, 1987. doi:10.1007/BF01840359.
  2. Capacitated dynamic programming: Faster knapsack and graph algorithms. In 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, volume 132 of LIPIcs, pages 19:1–19:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ICALP.2019.19.
  3. Fast algorithms for knapsack via convolution and prediction. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 1269–1282. ACM, 2018. doi:10.1145/3188745.3188876.
  4. Richard Bellman. Notes on the theory of dynamic programming IV - maximization over discrete sets. Naval Research Logistics Quarterly, 3(1-2):67–70, mar 1956. doi:10.1002/nav.3800030107.
  5. Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 1073–1084. SIAM, 2017. doi:10.1137/1.9781611974782.69.
  6. Karl Bringmann. Knapsack with small items in near-quadratic time. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024. ACM, 2024.
  7. Faster knapsack algorithms via bounded monotone min-plus-convolution. In 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, volume 229 of LIPIcs, pages 31:1–31:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.31.
  8. Faster 0-1-knapsack via near-convex min-plus-convolution. In 31st Annual European Symposium on Algorithms, ESA 2023, volume 274 of LIPIcs, pages 24:1–24:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ESA.2023.24.
  9. Clustered integer 3SUM via additive combinatorics. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, pages 31–40. ACM, 2015. doi:10.1145/2746539.2746568.
  10. Faster algorithms for bounded knapsack and bounded subset sum via fine-grained proximity results. In Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, pages 4828–4848. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.171.
  11. Faster min-plus product for monotone instances. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1529–1542. ACM, 2022. doi:10.1145/3519935.3520057.
  12. On problems equivalent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, 2019. doi:10.1145/3293465.
  13. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, 2009. URL: http://www.cambridge.org/gb/knowledge/isbn/item2327542/.
  14. Simple and faster algorithms for knapsack. In 2024 Symposium on Simplicity in Algorithms, SOSA 2024, pages 56–62. SIAM, 2024. doi:10.1137/1.9781611977936.6.
  15. Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13–30, 1963. doi:10.1080/01621459.1963.10500830.
  16. Graham James Oscar Jameson. The prime number theorem. Number 53 in London Mathematical Society Student Texts. Cambridge University Press, 2003. doi:10.1017/CBO9781139164986.
  17. Ce Jin. Solving knapsack with small items via L0-proximity. CoRR, abs/2307.09454, 2023. arXiv:2307.09454, doi:10.48550/ARXIV.2307.09454.
  18. Ce Jin. 0-1 knapsack in nearly quadratic time. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024. ACM, 2024.
  19. R. Kaas and J.M. Buhrman. Mean, median and mode in binomial distributions. Statistica Neerlandica, 34(1):13–18, 1980. doi:https://doi.org/10.1111/j.1467-9574.1980.tb00681.x.
  20. Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium on the Complexity of Computer Computations, 1972, The IBM Research Symposia Series, pages 85–103. Plenum Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.
  21. Improved dynamic programming in connection with an FPTAS for the knapsack problem. J. Comb. Optim., 8(1):5–11, 2004. doi:10.1023/B:JOCO.0000021934.29833.6B.
  22. Knapsack problems. Springer, 2004. doi:10.1007/978-3-540-24777-7.
  23. On the fine-grained complexity of one-dimensional dynamic programming. In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, volume 80 of LIPIcs, pages 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.ICALP.2017.21.
  24. David Pisinger. Linear time algorithms for knapsack problems with bounded weights. J. Algorithms, 33(1):1–14, 1999. doi:10.1006/JAGM.1999.1034.
  25. Knapsack and subset sum with small items. In 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, volume 198 of LIPIcs, pages 106:1–106:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.106.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com