Social-MAE: Social Masked Autoencoder for Multi-person Motion Representation Learning (2404.05578v1)
Abstract: For a complete comprehension of multi-person scenes, it is essential to go beyond basic tasks like detection and tracking. Higher-level tasks, such as understanding the interactions and social activities among individuals, are also crucial. Progress towards models that can fully understand scenes involving multiple people is hindered by a lack of sufficient annotated data for such high-level tasks. To address this challenge, we introduce Social-MAE, a simple yet effective transformer-based masked autoencoder framework for multi-person human motion data. The framework uses masked modeling to pre-train the encoder to reconstruct masked human joint trajectories, enabling it to learn generalizable and data efficient representations of motion in human crowded scenes. Social-MAE comprises a transformer as the MAE encoder and a lighter-weight transformer as the MAE decoder which operates on multi-person joints' trajectory in the frequency domain. After the reconstruction task, the MAE decoder is replaced with a task-specific decoder and the model is fine-tuned end-to-end for a variety of high-level social tasks. Our proposed model combined with our pre-training approach achieves the state-of-the-art results on various high-level social tasks, including multi-person pose forecasting, social grouping, and social action understanding. These improvements are demonstrated across four popular multi-person datasets encompassing both human 2D and 3D body pose.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.