Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

XL$^2$Bench: A Benchmark for Extremely Long Context Understanding with Long-range Dependencies (2404.05446v1)

Published 8 Apr 2024 in cs.CL

Abstract: LLMs have demonstrated remarkable performance across diverse tasks but are constrained by their small context window sizes. Various efforts have been proposed to expand the context window to accommodate even up to 200K input tokens. Meanwhile, building high-quality benchmarks with much longer text lengths and more demanding tasks to provide comprehensive evaluations is of immense practical interest to facilitate long context understanding research of LLMs. However, prior benchmarks create datasets that ostensibly cater to long-text comprehension by expanding the input of traditional tasks, which falls short to exhibit the unique characteristics of long-text understanding, including long dependency tasks and longer text length compatible with modern LLMs' context window size. In this paper, we introduce a benchmark for extremely long context understanding with long-range dependencies, XL$2$Bench, which includes three scenarios: Fiction Reading, Paper Reading, and Law Reading, and four tasks of increasing complexity: Memory Retrieval, Detailed Understanding, Overall Understanding, and Open-ended Generation, covering 27 subtasks in English and Chinese. It has an average length of 100K+ words (English) and 200K+ characters (Chinese). Evaluating six leading LLMs on XL$2$Bench, we find that their performance significantly lags behind human levels. Moreover, the observed decline in performance across both the original and enhanced datasets underscores the efficacy of our approach to mitigating data contamination.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: