Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-time Self-body Image Acquisition and its Application to the Control of Musculoskeletal Structures (2404.05293v1)

Published 8 Apr 2024 in cs.RO

Abstract: The tendon-driven musculoskeletal humanoid has many benefits that human beings have, but the modeling of its complex muscle and bone structures is difficult and conventional model-based controls cannot realize intended movements. Therefore, a learning control mechanism that acquires nonlinear relationships between joint angles, muscle tensions, and muscle lengths from the actual robot is necessary. In this study, we propose a system which runs the learning control mechanism for a long time to keep the self-body image of the musculoskeletal humanoid correct at all times. Also, we show that the musculoskeletal humanoid can conduct position control, torque control, and variable stiffness control using this self-body image. We conduct a long-time self-body image acquisition experiment lasting 3 hours, evaluate variable stiffness control using the self-body image, etc., and discuss the superiority and practicality of the self-body image acquisition of musculoskeletal structures, comprehensively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. Y. Nakanishi, S. Ohta, T. Shirai, Y. Asano, T. Kozuki, Y. Kakehashi, H. Mizoguchi, T. Kurotobi, Y. Motegi, K. Sasabuchi, J. Urata, K. Okada, I. Mizuuchi, and M. Inaba, “Design Approach of Biologically-Inspired Musculoskeletal Humanoids,” International Journal of Advanced Robotic Systems, vol. 10, no. 4, pp. 216–228, 2013.
  2. S. Wittmeier, C. Alessandro, N. Bascarevic, K. Dalamagkidis, D. Devereux, A. Diamond, M. Jäntsch, K. Jovanovic, R. Knight, H. G. Marques, P. Milosavljevic, B. Mitra, B. Svetozarevic, V. Potkonjak, R. Pfeifer, A. Knoll, and O. Holland, “Toward Anthropomimetic Robotics: Development, Simulation, and Control of a Musculoskeletal Torso,” Artificial Life, vol. 19, no. 1, pp. 171–193, 2013.
  3. Y. Asano, T. Kozuki, S. Ookubo, M. Kawamura, S. Nakashima, T. Katayama, Y. Iori, H. Toshinori, K. Kawaharazuka, S. Makino, Y. Kakiuchi, K. Okada, and M. Inaba, “Human Mimetic Musculoskeletal Humanoid Kengoro toward Real World Physically Interactive Actions,” in Proceedings of the 2016 IEEE-RAS International Conference on Humanoid Robots, 2016, pp. 876–883.
  4. S. Hirose and S. Ma, “Coupled tendon-driven multijoint manipulator,” in Proceedings of the 1991 IEEE International Conference on Robotics and Automation, 1991, pp. 1268–1275.
  5. H. G. Marques, , C. Maufroy, A. Lenz, K. Dalamagkidis, and U. Culha, “MYOROBOTICS: a modular toolkit for legged locomotion research using musculoskeletal designs,” in Proceedings of 6th International Symposium on Adaptive Motion of Animals and Machines, 2013.
  6. I. Mizuuchi, Y. Nakanishi, T. Yoshikai, M. Inaba, H. Inoue, and O. Khatib, “Body Information Acquisition System of Redundant Musculo-Skeletal Humanoid,” in Experimental Robotics IX, 2006, pp. 249–258.
  7. S. Ookubo, Y. Asano, T. Kozuki, T. Shirai, K. Okada, and M. Inaba, “Learning Nonlinear Muscle-Joint State Mapping Toward Geometric Model-Free Tendon Driven Musculoskeletal Robots,” in Proceedings of the 2015 IEEE-RAS International Conference on Humanoid Robots, 2015, pp. 765–770.
  8. Y. Motegi, T. Shirai, T. Izawa, T. Kurotobi, J. Urata, Y. Nakanishi, K. Okada, and M. Inaba, “Motion control based on modification of the Jacobian map between the muscle space and work space with musculoskeletal humanoid,” in Proceedings of the 2012 IEEE-RAS International Conference on Humanoid Robots, 2012, pp. 835–840.
  9. K. Kawaharazuka, S. Makino, M. Kawamura, Y. Asano, K. Okada, and M. Inaba, “Online Learning of Joint-Muscle Mapping using Vision in Tendon-driven Musculoskeletal Humanoids,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 772–779, 2018.
  10. K. Kawaharazuka, S. Makino, M. Kawamura, A. Fujii, Y. Asano, K. Okada, and M. Inaba, “Online Self-body Image Acquisition Considering Changes in Muscle Routes Caused by Softness of Body Tissue for Tendon-driven Musculoskeletal Humanoids,” in Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018, pp. 1711–1717.
  11. H. Kobayashi, K. Hyodo, and D. Ogane, “On Tendon-Driven Robotic Mechanisms with Redundant Tendons,” The International Journal of Robotics Research, vol. 17, no. 5, pp. 561–571, 1998.
  12. M. V. Weghe, M. Rogers, M. Weissert, and Y. Matsuoka, “The ACT Hand: design of the skeletal structure,” in Proceedings of the 2004 IEEE International Conference on Robotics and Automation, 2004, pp. 3375–3379.
  13. C. Paul, F. J. Valero-Cuevas, and H. Lipson, “Design and control of tensegrity robots for locomotion,” IEEE Transactions on Robotics, vol. 22, no. 5, pp. 944–957, 2006.
  14. R. Niiyama, S. Nishikawa, and Y. Kuniyoshi, “Athlete Robot with applied human muscle activation patterns for bipedal running,” in Proceedings of the 2010 IEEE-RAS International Conference on Humanoid Robots, 2010, pp. 498–503.
  15. K. Kawaharazuka, S. Makino, X. Chen, A. Fujii, M. Kawamura, T. Makabe, M. Onitsuka, Y. Asano, K. Okada, K. Kawasaki, and M. Inaba, “Design of a Musculoskeletal Upper Limb with Pseudo Ball Joint Modules for the Control of Redundant Nonlinear Elastic Elements,” in 2017 JSME Conference on Robotics and Mechatronics, 2018, pp. 2A2–G09.
  16. T. Shirai, J. Urata, Y. Nakanishi, K. Okada, and M. Inaba, “Whole body adapting behavior with muscle level stiffness control of tendon-driven multijoint robot,” in Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, 2011, pp. 2229–2234.
  17. M. Kawamura, S. Ookubo, Y. Asano, T. Kozuki, K. Okada, and M. Inaba, “A Joint-Space Controller Based on Redundant Muscle Tension for Multiple DOF Joints in Musculoskeletal Humanoids,” in Proceedings of the 2016 IEEE-RAS International Conference on Humanoid Robots, 2016, pp. 814–819.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Kento Kawaharazuka (91 papers)
  2. Kei Tsuzuki (14 papers)
  3. Shogo Makino (11 papers)
  4. Moritaka Onitsuka (14 papers)
  5. Yuki Asano (33 papers)
  6. Kei Okada (102 papers)
  7. Koji Kawasaki (22 papers)
  8. Masayuki Inaba (97 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com