Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Out-of-Distribution Data: An Acquaintance of Adversarial Examples -- A Survey (2404.05219v1)

Published 8 Apr 2024 in cs.LG

Abstract: Deep neural networks (DNNs) deployed in real-world applications can encounter out-of-distribution (OOD) data and adversarial examples. These represent distinct forms of distributional shifts that can significantly impact DNNs' reliability and robustness. Traditionally, research has addressed OOD detection and adversarial robustness as separate challenges. This survey focuses on the intersection of these two areas, examining how the research community has investigated them together. Consequently, we identify two key research directions: robust OOD detection and unified robustness. Robust OOD detection aims to differentiate between in-distribution (ID) data and OOD data, even when they are adversarially manipulated to deceive the OOD detector. Unified robustness seeks a single approach to make DNNs robust against both adversarial attacks and OOD inputs. Accordingly, first, we establish a taxonomy based on the concept of distributional shifts. This framework clarifies how robust OOD detection and unified robustness relate to other research areas addressing distributional shifts, such as OOD detection, open set recognition, and anomaly detection. Subsequently, we review existing work on robust OOD detection and unified robustness. Finally, we highlight the limitations of the existing work and propose promising research directions that explore adversarial and OOD inputs within a unified framework.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.