Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts (2404.05089v1)

Published 7 Apr 2024 in cs.CL and cs.LG

Abstract: The advancement of deep learning has led to the emergence of Mixture-of-Experts (MoEs) models, known for their dynamic allocation of computational resources based on input. Despite their promise, MoEs face challenges, particularly in terms of memory requirements. To address this, our work introduces SEER-MoE, a novel two-stage framework for reducing both the memory footprint and compute requirements of pre-trained MoE models. The first stage involves pruning the total number of experts using a heavy-hitters counting guidance, while the second stage employs a regularization-based fine-tuning strategy to recover accuracy loss and reduce the number of activated experts during inference. Our empirical studies demonstrate the effectiveness of our method, resulting in a sparse MoEs model optimized for inference efficiency with minimal accuracy trade-offs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.