Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Lagrangian operator inference enhanced with structure-preserving machine learning for nonintrusive model reduction of mechanical systems (2404.05040v1)

Published 7 Apr 2024 in cs.CE and math.DS

Abstract: Complex mechanical systems often exhibit strongly nonlinear behavior due to the presence of nonlinearities in the energy dissipation mechanisms, material constitutive relationships, or geometric/connectivity mechanics. Numerical modeling of these systems leads to nonlinear full-order models that possess an underlying Lagrangian structure. This work proposes a Lagrangian operator inference method enhanced with structure-preserving machine learning to learn nonlinear reduced-order models (ROMs) of nonlinear mechanical systems. This two-step approach first learns the best-fit linear Lagrangian ROM via Lagrangian operator inference and then presents a structure-preserving machine learning method to learn nonlinearities in the reduced space. The proposed approach can learn a structure-preserving nonlinear ROM purely from data, unlike the existing operator inference approaches that require knowledge about the mathematical form of nonlinear terms. From a machine learning perspective, it accelerates the training of the structure-preserving neural network by providing an informed prior, and it reduces the computational cost of the network training by operating on the reduced space. The method is first demonstrated on two simulated examples: a conservative nonlinear rod model and a two-dimensional nonlinear membrane with nonlinear internal damping. Finally, the method is demonstrated on an experimental dataset consisting of digital image correlation measurements taken from a lap-joint beam structure from which a predictive model is learned that captures amplitude-dependent frequency and damping characteristics accurately. The numerical results demonstrate that the proposed approach yields generalizable nonlinear ROMs that exhibit bounded energy error, capture the nonlinear characteristics reliably, and provide accurate long-time predictions outside the training data regime.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.