Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PathFinder: Attention-Driven Dynamic Non-Line-of-Sight Tracking with a Mobile Robot (2404.05024v1)

Published 7 Apr 2024 in cs.CV and cs.RO

Abstract: The study of non-line-of-sight (NLOS) imaging is growing due to its many potential applications, including rescue operations and pedestrian detection by self-driving cars. However, implementing NLOS imaging on a moving camera remains an open area of research. Existing NLOS imaging methods rely on time-resolved detectors and laser configurations that require precise optical alignment, making it difficult to deploy them in dynamic environments. This work proposes a data-driven approach to NLOS imaging, PathFinder, that can be used with a standard RGB camera mounted on a small, power-constrained mobile robot, such as an aerial drone. Our experimental pipeline is designed to accurately estimate the 2D trajectory of a person who moves in a Manhattan-world environment while remaining hidden from the camera's field-of-view. We introduce a novel approach to process a sequence of dynamic successive frames in a line-of-sight (LOS) video using an attention-based neural network that performs inference in real-time. The method also includes a preprocessing selection metric that analyzes images from a moving camera which contain multiple vertical planar surfaces, such as walls and building facades, and extracts planes that return maximum NLOS information. We validate the approach on in-the-wild scenes using a drone for video capture, thus demonstrating low-cost NLOS imaging in dynamic capture environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. R. Geng, Y. Hu, Y. Chen, et al., “Recent advances on non-line-of-sight imaging: Conventional physical models, deep learning, and new scenes,” APSIPA Transactions on Signal and Information Processing, vol. 11, no. 1, 2021.
  2. T. Maeda, G. Satat, T. Swedish, L. Sinha, and R. Raskar, “Recent advances in imaging around corners,” arXiv preprint arXiv:1910.05613, 2019.
  3. P. V. Borges, A. Tews, and D. Haddon, “Pedestrian detection in industrial environments: Seeing around corners,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 4231–4232.
  4. O. Rabaste, J. Bosse, D. Poullin, I. Hinostroza, T. Letertre, T. Chonavel, et al., “Around-the-corner radar: Detection and localization of a target in non-line of sight,” in IEEE Radar Conference (RadarConf), 2017, pp. 0842–0847.
  5. N. Scheiner, F. Kraus, F. Wei, B. Phan, F. Mannan, N. Appenrodt, W. Ritter, J. Dickmann, K. Dietmayer, B. Sick, et al., “Seeing around street corners: Non-line-of-sight detection and tracking in-the-wild using doppler radar,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 2068–2077.
  6. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nature Communications, vol. 3, no. 1, p. 745, 2012.
  7. M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Optics Express, vol. 23, no. 16, pp. 20 997–21 011, 2015.
  8. C. Wu, J. Liu, X. Huang, Z.-P. Li, C. Yu, J.-T. Ye, J. Zhang, Q. Zhang, X. Dou, V. K. Goyal, et al., “Non–line-of-sight imaging over 1.43 km,” Proceedings of the National Academy of Sciences, vol. 118, no. 10, p. e2024468118, 2021.
  9. A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using ultrafast transient imaging,” International Journal of Computer Vision, vol. 95, pp. 13–28, 2011.
  10. C.-Y. Tsai, K. N. Kutulakos, S. G. Narasimhan, and A. C. Sankaranarayanan, “The geometry of first-returning photons for non-line-of-sight imaging,” in IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7216–7224.
  11. S. Xin, S. Nousias, K. N. Kutulakos, A. C. Sankaranarayanan, S. G. Narasimhan, and I. Gkioulekas, “A theory of Fermat paths for non-line-of-sight shape reconstruction,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 6800–6809.
  12. M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature, vol. 555, no. 7696, pp. 338–341, 2018.
  13. D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-sight imaging using fast f-k migration,” ACM Transactions on Graphics (ToG), vol. 38, no. 4, pp. 1–13, 2019.
  14. J. Klein, C. Peters, J. Martín, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Scientific Reports, vol. 6, no. 1, p. 32491, 2016.
  15. W. Chen, S. Daneau, F. Mannan, and F. Heide, “Steady-state non-line-of-sight imaging,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 6790–6799.
  16. S. Chandran and S. Jayasuriya, “Adaptive lighting for data-driven non-line-of-sight 3d localization and object identification,” British Machine Vision Conference (BMVC), 2019.
  17. S. Chandran, T. Yatagawa, H. Kubo, and S. Jayasuriya, “Learning-based spotlight position optimization for non-line-of-sight human localization and posture classification,” in IEEE/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 4218–4227.
  18. M. Baradad, V. Ye, A. B. Yedidia, F. Durand, W. T. Freeman, G. W. Wornell, and A. Torralba, “Inferring light fields from shadows,” in IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6267–6275.
  19. K. L. Bouman, V. Ye, A. B. Yedidia, F. Durand, G. W. Wornell, A. Torralba, and W. T. Freeman, “Turning corners into cameras: Principles and methods,” in IEEE International Conference on Computer Vision, 2017, pp. 2270–2278.
  20. Y. Wang, Z. Wang, B. Zhao, D. Wang, M. Chen, and X. Li, “Propagate and calibrate: Real-time passive non-line-of-sight tracking,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 972–981.
  21. P. Sharma, M. Aittala, Y. Y. Schechner, A. Torralba, G. W. Wornell, W. T. Freeman, and F. Durand, “What you can learn by staring at a blank wall,” in IEEE/CVF International Conference on Computer Vision, 2021, pp. 2330–2339.
  22. W. Krska, S. W. Seidel, C. Saunders, R. Czajkowski, C. Yu, J. Murray-Bruce, and V. Goyal, “Double your corners, double your fun: The doorway camera,” in IEEE International Conference on Computational Photography (ICCP), 2022, pp. 1–12.
  23. Y. Cao, R. Liang, J. Yang, Y. Cao, Z. He, J. Chen, and X. Li, “Computational framework for steady-state NLOS localization under changing ambient illumination conditions,” Optics Express, vol. 30, no. 2, pp. 2438–2452, 2022.
  24. A. B. Yedidia, M. Baradad, C. Thrampoulidis, W. T. Freeman, and G. W. Wornell, “Using unknown occluders to recover hidden scenes,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 12 231–12 239.
  25. R. Geng, Y. Hu, Z. Lu, C. Yu, H. Li, H. Zhang, and Y. Chen, “Passive non-line-of-sight imaging using optimal transport,” IEEE Transactions on Image Processing, vol. 31, pp. 110–124, 2021.
  26. S. W. Seidel, J. Murray-Bruce, Y. Ma, C. Yu, W. T. Freeman, and V. K. Goyal, “Two-dimensional non-line-of-sight scene estimation from a single edge occluder,” IEEE Transactions on Computational Imaging, vol. 7, pp. 58–72, 2020.
  27. A. Torralba and W. T. Freeman, “Accidental pinhole and pinspeck cameras: Revealing the scene outside the picture,” International Journal of Computer Vision, vol. 110, pp. 92–112, 2014.
  28. A. Beckus, A. Tamasan, and G. K. Atia, “Multi-modal non-line-of-sight passive imaging,” IEEE Transactions on Image Processing, vol. 28, no. 7, pp. 3372–3382, 2019.
  29. M. Tancik, G. Satat, and R. Raskar, “Flash photography for data-driven hidden scene recovery,” arXiv preprint arXiv:1810.11710, 2018.
  30. M. Aittala, P. Sharma, L. Murmann, A. Yedidia, G. Wornell, B. Freeman, and F. Durand, “Computational mirrors: Blind inverse light transport by deep matrix factorization,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  31. J. He, S. Wu, R. Wei, and Y. Zhang, “Non-line-of-sight imaging and tracking of moving objects based on deep learning,” Optics Express, vol. 30, no. 10, pp. 16 758–16 772, 2022.
  32. K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar, C. J. Taylor, and V. Kumar, “Robust stereo visual inertial odometry for fast autonomous flight,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 965–972, 2018.
  33. Y. Xie, F. Shu, J. Rambach, A. Pagani, and D. Stricker, “PlaneRecNet: multi-task learning with cross-task consistency for piece-wise plane detection and reconstruction from a single RGB image,” arXiv preprint arXiv:2110.11219, 2021.
  34. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  35. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” in European Conference on Computer Vision, 2020, pp. 213–229.
  36. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al., “Segment anything,” arXiv preprint arXiv:2304.02643, 2023.
  37. M. Dehghani, B. Mustafa, J. Djolonga, J. Heek, M. Minderer, M. Caron, A. Steiner, J. Puigcerver, R. Geirhos, I. Alabdulmohsin, et al., “Patch n’Pack: NaViT, a vision transformer for any aspect ratio and resolution,” arXiv preprint arXiv:2307.06304, 2023.
  38. J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart, “Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes,” in IEEE International Conference on Robotics and Automation, 2016, pp. 4304–4311.

Summary

We haven't generated a summary for this paper yet.