Papers
Topics
Authors
Recent
2000 character limit reached

Towards Understanding the Influence of Reward Margin on Preference Model Performance (2404.04932v1)

Published 7 Apr 2024 in cs.CL and cs.AI

Abstract: Reinforcement Learning from Human Feedback (RLHF) is a widely used framework for the training of LLMs. However, the process of using RLHF to develop a LLM that is well-aligned presents challenges, especially when it comes to optimizing the reward model. Our research has found that existing reward models, when trained using the traditional ranking objective based on human preference data, often struggle to effectively distinguish between responses that are more or less favorable in real-world scenarios. To bridge this gap, our study introduces a novel method to estimate the preference differences without the need for detailed, exhaustive labels from human annotators. Our experimental results provide empirical evidence that incorporating margin values into the training process significantly improves the effectiveness of reward models. This comparative analysis not only demonstrates the superiority of our approach in terms of reward prediction accuracy but also highlights its effectiveness in practical applications.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.