Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Radial Networks: Dynamic Layer Routing for High-Performance Large Language Models (2404.04900v1)

Published 7 Apr 2024 in cs.CL

Abstract: LLMs often struggle with strict memory, latency, and power demands. To meet these demands, various forms of dynamic sparsity have been proposed that reduce compute on an input-by-input basis. These methods improve over static methods by exploiting the variance across individual inputs, which has steadily grown with the exponential increase in training data. Yet, the increasing depth within modern models, currently with hundreds of layers, has opened opportunities for dynamic layer sparsity, which skips the computation for entire layers. In this work, we explore the practicality of layer sparsity by profiling residual connections and establish the relationship between model depth and layer sparsity. For example, the residual blocks in the OPT-66B model have a median contribution of 5% to its output. We then take advantage of this dynamic sparsity and propose Radial Networks, which perform token-level routing between layers guided by a trained router module. These networks can be used in a post-training distillation from sequential networks or trained from scratch to co-learn the router and layer weights. They enable scaling to larger model sizes by decoupling the number of layers from the dynamic depth of the network, and their design allows for layer reuse. By varying the compute token by token, they reduce the overall resources needed for generating entire sequences. Overall, this leads to larger capacity networks with significantly lower compute and serving costs for LLMs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 tweets and received 8 likes.

Upgrade to Pro to view all of the tweets about this paper: