The convergence of the EM scheme in empirical approximation of invariant probability measure for McKean-Vlasov SDEs (2404.04781v1)
Abstract: Based on the assumption of the existence and uniqueness of the invariant measure for McKean-Vlasov stochastic differential equations (MV-SDEs), a self-interacting process that depends only on the current and historical information of the solution is constructed for MV-SDEs. The convergence rate of the weighted empirical measure of the self-interacting process and the invariant measure of MV-SDEs is obtained in the W2-Wasserstein metric. Furthermore, under the condition of linear growth, an EM scheme whose uniformly 1/2-order convergence rate with respect to time is obtained is constructed for the self-interacting process. Then, the convergence rate between the weighted empirical measure of the EM numerical solution of the self-interacting process and the invariant measure of MV-SDEs is derived. Moreover, the convergence rate between the averaged weighted empirical measure of the EM numerical solution of the corresponding multi-particle system and the invariant measure of MV-SDEs in the W2-Wasserstein metric is also given. In addition, the computational cost of the two approximation methods is compared, which shows that the averaged weighted empirical approximation of the particle system has a lower cost. Finally, the theoretical results are validated through numerical experiments.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.