Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepLINK-T: deep learning inference for time series data using knockoffs and LSTM (2404.04317v1)

Published 5 Apr 2024 in stat.ML, cs.LG, and q-bio.QM

Abstract: High-dimensional longitudinal time series data is prevalent across various real-world applications. Many such applications can be modeled as regression problems with high-dimensional time series covariates. Deep learning has been a popular and powerful tool for fitting these regression models. Yet, the development of interpretable and reproducible deep-learning models is challenging and remains underexplored. This study introduces a novel method, Deep Learning Inference using Knockoffs for Time series data (DeepLINK-T), focusing on the selection of significant time series variables in regression while controlling the false discovery rate (FDR) at a predetermined level. DeepLINK-T combines deep learning with knockoff inference to control FDR in feature selection for time series models, accommodating a wide variety of feature distributions. It addresses dependencies across time and features by leveraging a time-varying latent factor structure in time series covariates. Three key ingredients for DeepLINK-T are 1) a Long Short-Term Memory (LSTM) autoencoder for generating time series knockoff variables, 2) an LSTM prediction network using both original and knockoff variables, and 3) the application of the knockoffs framework for variable selection with FDR control. Extensive simulation studies have been conducted to evaluate DeepLINK-T's performance, showing its capability to control FDR effectively while demonstrating superior feature selection power for high-dimensional longitudinal time series data compared to its non-time series counterpart. DeepLINK-T is further applied to three metagenomic data sets, validating its practical utility and effectiveness, and underscoring its potential in real-world applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. Wang, L., Wang, Y., Chang, Q.: Feature selection methods for big data bioinformatics: A survey from the search perspective. Methods 111, 21–31 (2016) Love et al. [2014] Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12), 1–21 (2014) Lin and Peddada [2020] Lin, H., Peddada, S.D.: Analysis of compositions of microbiomes with bias correction. Nature Communications 11(1), 3514 (2020) Zhang et al. [2014] Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E., Liu, M.: A causal feature selection algorithm for stock prediction modeling. Neurocomputing 142, 48–59 (2014) Zhao et al. [2016] Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12), 1–21 (2014) Lin and Peddada [2020] Lin, H., Peddada, S.D.: Analysis of compositions of microbiomes with bias correction. Nature Communications 11(1), 3514 (2020) Zhang et al. [2014] Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E., Liu, M.: A causal feature selection algorithm for stock prediction modeling. Neurocomputing 142, 48–59 (2014) Zhao et al. [2016] Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lin, H., Peddada, S.D.: Analysis of compositions of microbiomes with bias correction. Nature Communications 11(1), 3514 (2020) Zhang et al. [2014] Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E., Liu, M.: A causal feature selection algorithm for stock prediction modeling. Neurocomputing 142, 48–59 (2014) Zhao et al. [2016] Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E., Liu, M.: A causal feature selection algorithm for stock prediction modeling. Neurocomputing 142, 48–59 (2014) Zhao et al. [2016] Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  2. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12), 1–21 (2014) Lin and Peddada [2020] Lin, H., Peddada, S.D.: Analysis of compositions of microbiomes with bias correction. Nature Communications 11(1), 3514 (2020) Zhang et al. [2014] Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E., Liu, M.: A causal feature selection algorithm for stock prediction modeling. Neurocomputing 142, 48–59 (2014) Zhao et al. [2016] Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lin, H., Peddada, S.D.: Analysis of compositions of microbiomes with bias correction. Nature Communications 11(1), 3514 (2020) Zhang et al. [2014] Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E., Liu, M.: A causal feature selection algorithm for stock prediction modeling. Neurocomputing 142, 48–59 (2014) Zhao et al. [2016] Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E., Liu, M.: A causal feature selection algorithm for stock prediction modeling. Neurocomputing 142, 48–59 (2014) Zhao et al. [2016] Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  3. Lin, H., Peddada, S.D.: Analysis of compositions of microbiomes with bias correction. Nature Communications 11(1), 3514 (2020) Zhang et al. [2014] Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E., Liu, M.: A causal feature selection algorithm for stock prediction modeling. Neurocomputing 142, 48–59 (2014) Zhao et al. [2016] Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E., Liu, M.: A causal feature selection algorithm for stock prediction modeling. Neurocomputing 142, 48–59 (2014) Zhao et al. [2016] Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  4. Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E., Liu, M.: A causal feature selection algorithm for stock prediction modeling. Neurocomputing 142, 48–59 (2014) Zhao et al. [2016] Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  5. Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Transactions on Big Data 4(2), 164–176 (2016) Remeseiro and Bolon-Canedo [2019] Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  6. Remeseiro, B., Bolon-Canedo, V.: A review of feature selection methods in medical applications. Computers in Biology and Medicine 112, 103375 (2019) Nagarajan et al. [2021] Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  7. Nagarajan, S.M., Muthukumaran, V., Murugesan, R., Joseph, R.B., Munirathanam, M.: Feature selection model for healthcare analysis and classification using classifier ensemble technique. International Journal of System Assurance Engineering and Management, 1–12 (2021) Rado et al. [2019] Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  8. Rado, O., Ali, N., Sani, H.M., Idris, A., Neagu, D.: Performance analysis of feature selection methods for classification of healthcare datasets. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. 929–938 (2019) Jović et al. [2015] Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  9. Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205 (2015) Breiman [2001] Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  10. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001) Chi et al. [2022] Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  11. Chi, C.-M., Vossler, P., Fan, Y., Lv, J.: Asymptotic properties of high-dimensional random forests. The Annals of Statistics 50, 3415–3438 (2022) Benjamini and Hochberg [1995] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  12. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57(1), 289–300 (1995) Benjamini and Yekutieli [2001] Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  13. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001) Ignatiadis et al. [2016] Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  14. Ignatiadis, N., Klaus, B., Zaugg, J.B., Huber, W.: Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13(7), 577–580 (2016) Scott et al. [2015] Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  15. Scott, J.G., Kelly, R.C., Smith, M.A., Zhou, P., Kass, R.E.: False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association 110(510), 459–471 (2015) Barber and Candès [2015] Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  16. Barber, R.F., Candès, E.J.: Controlling the false discovery rate via knockoffs. The Annals of Statistics 43, 2055–2085 (2015) Candès et al. [2018] Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  17. Candès, E.J., Fan, Y., Janson, L., Lv, J.: Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 551–577 (2018) Lu et al. [2018] Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  18. Lu, Y., Fan, Y., Lv, J., Noble, W.S.: DeepPINK: reproducible feature selection in deep neural networks. Advances in Neural Information Processing Systems (2018) Zhu et al. [2021] Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  19. Zhu, Z., Fan, Y., Kong, Y., Lv, J., Sun, F.: DeepLINK: deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America 118, 2104683118 (2021) Fan et al. [2020a] Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  20. Fan, Y., Demirkaya, E., Li, G., Lv, J.: RANK: large-scale inference with graphical nonlinear knockoffs. Journal of the American Statistical Association 115, 362–379 (2020) Fan et al. [2020b] Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  21. Fan, Y., Lv, J., Sharifvaghefi, M., Uematsu, Y.: IPAD: stable interpretable forecasting with knockoffs inference. Journal of the American Statistical Association 115, 1822–1834 (2020) Bai et al. [2021] Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  22. Bai, X., Ren, J., Fan, Y., Sun, F.: KIMI: knockoff inference for motif identification from molecular sequences with controlled false discovery rate. Bioinformatics 37, 759–766 (2021) Chi et al. [2024] Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  23. Chi, C.-M., Fan, Y., Ing, C.-K., Lv, J.: High-dimensional knockoffs inference for time series data. arXiv preprint arXiv:2112.09851 (2024) Fan et al. [2024] Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  24. Fan, Y., Gao, L., Lv, J.: ARK: robust knockoffs inference with coupling. arXiv preprint arXiv:2307.04400 (2024) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  25. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997) Sagheer and Kotb [2019] Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  26. Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific Reports 9(1), 19038 (2019) Werbos [1990] Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  27. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990) Ioffe and Szegedy [2015] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  28. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Bokulich et al. [2016] Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  29. Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D. Lieber, A., Wu, F., Perez-Perez, G.I., Chen, Y., et al.: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8(343), 343–82 (2016) Velten et al. [2022] Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  30. Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G., Stegle, O.: Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nature Methods 19(2), 179–186 (2022) Fehr et al. [2020] Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  31. Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., et al.: Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the child cohort study. Cell Host & Microbe 28(2), 285–297 (2020) Arrieta et al. [2015] Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  32. Arrieta, M.-C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7(307), 307–152 (2015) Cram et al. [2015] Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  33. Cram, J.A., Chow, C.-E.T., Sachdeva, R., Needham, D.M., Parada, A.E., Steele, J.A., Fuhrman, J.A.: Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9(3), 563–580 (2015) Yeh and Fuhrman [2022] Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  34. Yeh, Y.-C., Fuhrman, J.A.: Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications 2(1), 36 (2022) Sigman and Hain [2012] Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  35. Sigman, D.M., Hain, M.P.: The biological productivity of the ocean. Nature Education Knowledge 3(10), 21 (2012) Jackson et al. [1990] Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  36. Jackson, L.J., Stockner, J.G., Harrison, P.J.: Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47(1), 128–135 (1990) Zhao et al. [2010] Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  37. Zhao, D., Xing, X., Liu, Y., Yang, J., Wang, L.: The relation of chlorophyll-a concentration with the reflectance peak near 700 nm in algae-dominated waters and sensitivity of fluorescence algorithms for detecting algal bloom. International Journal of Remote Sensing 31(1), 39–48 (2010) Kirchman et al. [1985] Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  38. Kirchman, D., K’nees, E., Hodson, R.: Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and environmental microbiology 49(3), 599–607 (1985) Lamy et al. [2009] Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  39. Lamy, D., Obernosterer, I., Laghdass, M., Artigas, L., Breton, E., Grattepanche, J., Lecuyer, E., Degros, N., Lebaron, P., Christaki, U.: Temporal changes of major bacterial groups and bacterial heterotrophic activity during a phaeocystis globosa bloom in the eastern english channel. Aquatic microbial ecology 58(1), 95–107 (2009) Wemheuer et al. [2015] Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  40. Wemheuer, B., Wemheuer, F., Hollensteiner, J., Meyer, F.-D., Voget, S., Daniel, R.: The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern north sea assessed by comparative metagenomic and metatranscriptomic approaches. Frontiers in Microbiology 6, 805 (2015) Obernosterer et al. [2011] Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  41. Obernosterer, I., Catala, P., Lebaron, P., West, N.J.: Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the southern ocean. Limnology and oceanography 56(6), 2391–2401 (2011) Creswell et al. [2020] Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  42. Creswell, R., Tan, J., Leff, J.W., Brooks, B., Mahowald, M.A., Thieroff-Ekerdt, R., Gerber, G.K.: High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine 12, 1–16 (2020) Azagra-Boronat et al. [2019] Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  43. Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Land, B., Tims, S., Stahl, B., Knol, J., Garssen, J., Franch, À., Castell, M., et al.: Oligosaccharides modulate rotavirus-associated dysbiosis and tlr gene expression in neonatal rats. Cells 8(8), 876 (2019) Vaswani et al. [2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
  44. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Wenxuan Zuo (1 paper)
  2. Zifan Zhu (1 paper)
  3. Yuxuan Du (48 papers)
  4. Yi-Chun Yeh (1 paper)
  5. Jed A. Fuhrman (3 papers)
  6. Jinchi Lv (40 papers)
  7. Yingying Fan (48 papers)
  8. Fengzhu Sun (5 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com