Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Fast Diffeomorphic Image Registration using Patch based Fully Convolutional Networks (2404.04244v2)

Published 5 Apr 2024 in cs.CV

Abstract: Diffeomorphic image registration is a fundamental step in medical image analysis, owing to its capability to ensure the invertibility of transformations and preservation of topology. Currently, unsupervised learning-based registration techniques primarily extract features at the image level, potentially limiting their efficacy. This paper proposes a novel unsupervised learning-based fully convolutional network (FCN) framework for fast diffeomorphic image registration, emphasizing feature acquisition at the image patch level. Furthermore, a novel differential operator is introduced and integrated into the FCN architecture for parameter learning. Experiments are conducted on three distinct T1-weighted magnetic resonance imaging (T1w MRI) datasets. Comparative analyses with three state-of-the-art diffeomorphic image registration approaches including a typical conventional registration algorithm and two representative unsupervised learning-based methods, reveal that the proposed method exhibits superior performance in both registration accuracy and topology preservation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: