Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constructive proofs for some semilinear PDEs on $H^2(e^{|x|^2/4},\mathbb{R}^d)$ (2404.04054v1)

Published 5 Apr 2024 in math.AP, cs.NA, and math.NA

Abstract: We develop computer-assisted tools to study semilinear equations of the form \begin{equation*} -\Delta u -\frac{x}{2}\cdot \nabla{u}= f(x,u,\nabla u) ,\quad x\in\mathbb{R}d. \end{equation*} Such equations appear naturally in several contexts, and in particular when looking for self-similar solutions of parabolic PDEs. We develop a general methodology, allowing us not only to prove the existence of solutions, but also to describe them very precisely. We introduce a spectral approach based on an eigenbasis of $\mathcal{L}:= -\Delta -\frac{x}{2}\cdot \nabla$ in spherical coordinates, together with a quadrature rule allowing to deal with nonlinearities, in order to get accurate approximate solutions. We then use a Newton-Kantorovich argument, in an appropriate weighted Sobolev space, to prove the existence of a nearby exact solution. We apply our approach to nonlinear heat equations, to nonlinear Schr\"odinger equations and to a generalised viscous Burgers equation, and obtain both radial and non-radial self-similar profiles.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. Milton Abramowitz and I A Stegun “Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables Applied mathematics series” In National Bureau of Standards, Washington, DC, 1970
  2. J. Aguirre, M. Escobedo and E. Zuazua “Self-Similar Solutions of a Convection Diffusion Equation And Related Semilinear Elliptic Problems” In Communications in Partial Differential Equations 15.2, 1990, pp. 139–157 DOI: 10.1080/03605309908820681
  3. “Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation” In Arch. Ration. Mech. Anal. 197.3, 2010, pp. 1033–1051
  4. “Non-radial solutions for some semilinear elliptic equations on the disk” In Nonlinear Analysis, Theory, Methods and Applications 179 Elsevier Ltd, 2019, pp. 294–308 DOI: 10.1016/j.na.2018.09.001
  5. “Hermite pseudospectral method for nonlinear partial differential equations” In ESAIM: Mathematical Modelling and Numerical Analysis 34.4, 2000, pp. 859–872 DOI: 10.1051/m2an:2000100
  6. “Self-similar solutions to the Navier-Stokes equations: a survey of recent results”, 2018, pp. 1–25 URL: http://arxiv.org/abs/1802.00038
  7. Maxime Breden “Computer-assisted proofs for some nonlinear diffusion problems” In Communications in Nonlinear Science and Numerical Simulation 109, 2022, pp. 106292 DOI: 10.1016/j.cnsns.2022.106292
  8. “Rigorous validation of stochastic transition paths” In Journal de Mathématiques Pures et Appliquées 131 Elsevier Masson SAS, 2019, pp. 88–129 DOI: 10.1016/j.matpur.2019.04.012
  9. “Computer-assisted proofs for the many steady states of a chemotaxis model with local sensing” In arXiv preprint arXiv:2311.13896, 2023
  10. Haim Brezis “Functional Analysis, Sobolev Spaces and Partial Differential Equations” New York, NY: Springer New York, 2011 DOI: 10.1007/978-0-387-70914-7
  11. Haim Brezis, Lambertus Adrianus Peletier and David Terman “A very singular solution of the heat equation with absorption” In Archive for Rational Mechanics and Analysis 95.3, 1986, pp. 185–209 DOI: 10.1007/BF00251357
  12. Tristan Buckmaster, Gonzalo Cao-Labora and Javier Gómez-Serrano “Smooth imploding solutions for 3D compressible fluids” In arXiv preprint arXiv:2208.09445, 2022
  13. Matthieu Cadiot, Jean-Philippe Lessard and Jean-Christophe Nave “Rigorous computation of solutions of semi-linear PDEs on unbounded domains via spectral methods” In arXiv preprint arXiv:2302.12877, 2023
  14. Matthieu Cadiot, Jean-Philippe Lessard and Jean-Christophe Nave “Stationary non-radial localized patterns in the planar Swift-Hohenberg PDE: constructive proofs of existence” In arXiv preprint arXiv:2403.10450, 2024
  15. Jiajie Chen and Thomas Y Hou “Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data II: Rigorous Numerics” In arXiv preprint arXiv:2305.05660, 2023
  16. “On the eigenfunctions of the complex Ornstein–Uhlenbeck operators” In Kyoto Journal of Mathematics 54.3, 2014, pp. 577–596 DOI: 10.1215/21562261-2693451
  17. Hugo Chu “Codes associated to “Constructive proofs for some semilinear PDEs on H2⁢(e|x|2/4,ℝd)superscript𝐻2superscript𝑒superscript𝑥24superscriptℝ𝑑H^{2}(e^{|x|^{2}/4},\mathbb{R}^{d})italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_e start_POSTSUPERSCRIPT | italic_x | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 4 end_POSTSUPERSCRIPT , blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT )”” Available at https://github.com/Huggzz/Hermite-Laguerre_proofs/tree/main, 2024
  18. S. Day, J.-P. Lessard and K. Mischaikow “Validated continuation for equilibria of PDEs” In SIAM J. Numer. Anal. 45.4 SIAM, 2007, pp. 1398–1424
  19. “Variational problems related to self-similar solutions of the heat equation” In Nonlinear Analysis: Theory, Methods & Applications 11.10, 1987, pp. 1103–1133 DOI: 10.1016/0362-546X(87)90001-0
  20. Daniele Funaro “Computational aspects of pseudospectral Laguerre approximations” In Applied Numerical Mathematics 6.6, 1990, pp. 447–457 DOI: 10.1016/0168-9274(90)90003-X
  21. “Approximation of Some Diffusion Evolution Equations in Unbounded Domains by Hermite Functions” In Mathematics of Computation 57.196, 1991, pp. 597 DOI: 10.2307/2938707
  22. Javier Gómez-Serrano “Computer-assisted proofs in PDE: a survey” In SeMA Journal 76.3 Springer, 2019, pp. 459–484
  23. Olivier Hénot “On polynomial forms of nonlinear functional differential equations” In Journal of Computational Dynamics 8.3 Journal of Computational Dynamics, 2021, pp. 307–323
  24. Atsushi Higuchi “Symmetric tensor spherical harmonics on the N -sphere and their application to the de Sitter group S⁢O⁢(N,1)𝑆𝑂𝑁1SO(N,1)italic_S italic_O ( italic_N , 1 )” In Journal of Mathematical Physics 28.7, 1987, pp. 1553–1566 DOI: 10.1063/1.527513
  25. Kiyosi Itô “Complex Multiple Wiener Integral” In Japanese journal of mathematics :transactions and abstracts 22, 1952, pp. 63–86 DOI: 10.4099/jjm1924.22.0–“˙˝63
  26. Otared Kavian “Remarks on the large time behaviour of a nonlinear diffusion equation” In Annales de l’Institut Henri Poincaré C, Analyse non linéaire 4.5, 1987, pp. 423–452 DOI: 10.1016/s0294-1449(16)30358-4
  27. Otared Kavian and Fred B. Weissler “Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation” In Michigan Mathematical Journal 41.1, 1994 DOI: 10.1307/mmj/1029004922
  28. Shane Kepley and J.D. Mireles James “Chaotic motions in the restricted four body problem via Devaney’s saddle-focus homoclinic tangle theorem” In Journal of Differential Equations Elsevier, 2018
  29. J.C. Kurtz “Weighted Sobolev spaces with applications to singular nonlinear boundary value problems” In Journal of Differential Equations 49.1, 1983, pp. 105–123 DOI: 10.1016/0022-0396(83)90021-9
  30. J.-P. Lessard, J.D. Mireles James and J. Ransford “Automatic differentiation for Fourier series and the radii polynomial approach” In Physica D: Nonlinear Phenomena 334 Elsevier, 2016, pp. 174–186
  31. K Nagatou, MT Nakao and M Wakayama “Verified numerical computations for eigenvalues of non-commutative harmonic oscillators” In Numerical Functional Analysis and Optimization 23.5-6 Taylor & Francis, 2002, pp. 633–650
  32. Kaori Nagatou, Michael Plum and Mitsuhiro T Nakao “Eigenvalue excluding for perturbed-periodic one-dimensional Schrödinger operators” In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468.2138 The Royal Society Publishing, 2012, pp. 545–562
  33. “Radial Symmetry of Self-Similar Solutions for Semilinear Heat Equations” In Journal of Differential Equations 163.2, 2000, pp. 407–428 DOI: 10.1006/jdeq.1999.3742
  34. Mitsuhiro T. Nakao “A numerical approach to the proof of existence of solutions for elliptic problems” In Japan Journal of Applied Mathematics 5.2, 1988, pp. 313–332 DOI: 10.1007/BF03167877
  35. Mitsuhiro T. Nakao, Michael Plum and Yoshitaka Watanabe “Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations” 53, Springer Series in Computational Mathematics Singapore: Springer Singapore, 2019 DOI: 10.1007/978-981-13-7669-6
  36. Shin’ichi Oishi “Numerical verification of existence and inclusion of solutions for nonlinear operator equations” In Journal of Computational and Applied Mathematics 60.1-2 Elsevier, 1995, pp. 171–185
  37. Grigorios A. Pavliotis “Stochastic Processes and Applications” 60, Texts in Applied Mathematics New York, NY: Springer New York, 2014 DOI: 10.1007/978-1-4939-1323-7
  38. L A Peletier, D Terman and F B Weissler “On the equation Δ⁢u+x2⋅∇u+f⁢(u)=0Δ𝑢⋅𝑥2∇𝑢𝑓𝑢0\Delta u+\tfrac{x}{2}\cdot\nabla u+f(u)=0roman_Δ italic_u + divide start_ARG italic_x end_ARG start_ARG 2 end_ARG ⋅ ∇ italic_u + italic_f ( italic_u ) = 0” In Archive for Rational Mechanics and Analysis 94.1, 1986, pp. 83–99 DOI: 10.1007/BF00278244
  39. Michael Plum “Explicit H2superscript𝐻2H^{2}italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems” In Journal of Mathematical Analysis and Applications 165.1 Elsevier, 1992, pp. 36–61
  40. “JuliaIntervals/IntervalArithmetic.jl: v0.16.7”, 2020 DOI: 10.5281/ZENODO.3727070
  41. “General Complex Polynomial Root Solver and Its Further Optimization for Binary Microlenses”, 2012 URL: http://www.astrouw.edu.pl/
  42. C Spina, V Manco and Giorgio Metafune “Equazioni Ellittiche del Secondo Ordine, Parte Seconda: Teoria Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT” Università di Lecce - Coordinamento SIBA, 2005
  43. Ch. Srinivasa Rao, P.L. Sachdev and Mythily Ramaswamy “Self-similar solutions of a generalized Burgers equation with nonlinear damping” In Nonlinear Analysis: Real World Applications 4.5, 2003, pp. 723–741 DOI: 10.1016/S1468-1218(02)00083-4
  44. Akitoshi Takayasu, Xuefeng Liu and Shin’ichi Oishi “Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains” In Nonlinear Theory and Its Applications, IEICE 4.1 The Institute of Electronics, InformationCommunication Engineers, 2013, pp. 34–61
  45. Giorgio Talenti “Best constant in Sobolev inequality” In Annali di Matematica Pura ed Applicata 110.1, 1976, pp. 353–372 DOI: 10.1007/BF02418013
  46. “FastGaussQuadrature.jl” GitHub, 2014 URL: https://github.com/JuliaApproximation/FastGaussQuadrature.jl
  47. “Rigorous numerics in dynamics” In Notices Amer. Math. Soc. 62.9, 2015
  48. “Validation of the bifurcation diagram in the 2D Ohta–Kawasaki problem” In Nonlinearity 30.4 IOP Publishing, 2017, pp. 1584
  49. “Spontaneous periodic orbits in the Navier–Stokes flow” In Journal of Nonlinear Science 31.2 Springer, 2021, pp. 1–64
  50. Jan Bouwe Berg, Chris M Groothedde and JF Williams “Rigorous computation of a radially symmetric localized solution in a Ginzburg–Landau problem” In SIAM Journal on Applied Dynamical Systems 14.1 SIAM, 2015, pp. 423–447
  51. Jan Bouwe Berg, Olivier Hénot and Jean-Philippe Lessard “Constructive proofs for localised radial solutions of semilinear elliptic systems on ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT” In Nonlinearity 36.12 IOP Publishing, 2023, pp. 6476
  52. Thomas Wanner “Computer-assisted equilibrium validation for the diblock copolymer model” In Discrete & Continuous Dynamical Systems-A 37.2 American Institute of Mathematical Sciences, 2017, pp. 1075
  53. Fred B. Weissler “Rapidly decaying solutions of an ordinary differential equation with applications to semilinear elliptic and parabolic partial differential equations” In Archive for Rational Mechanics and Analysis 91.3, 1986, pp. 247–266 DOI: 10.1007/BF00250744
  54. Jonathan Wunderlich “Computer-assisted Existence Proofs for Navier-Stokes Equations on an Unbounded Strip with Obstacle”, 2022
  55. N. Yamamoto “A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem” In SIAM J. Numer. Anal. 35, 1998, pp. 2004–2013
  56. Eiji Yanagida “Uniqueness of Rapidly Decaying Solutions to the Haraux–Weissler Equation” In Journal of Differential Equations 127.2, 1996, pp. 561–570 DOI: 10.1006/jdeq.1996.0083
  57. “Rigorous numerics for partial differential equations: The Kuramoto—Sivashinsky equation” In Foundations of Computational Mathematics 1.3 Springer, 2001, pp. 255–288
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Maxime Breden (24 papers)
  2. Hugo Chu (5 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.