Cycle Life Prediction for Lithium-ion Batteries: Machine Learning and More (2404.04049v1)
Abstract: Batteries are dynamic systems with complicated nonlinear aging, highly dependent on cell design, chemistry, manufacturing, and operational conditions. Prediction of battery cycle life and estimation of aging states is important to accelerate battery R&D, testing, and to further the understanding of how batteries degrade. Beyond testing, battery management systems rely on real-time models and onboard diagnostics and prognostics for safe operation. Estimating the state of health and remaining useful life of a battery is important to optimize performance and use resources optimally. This tutorial begins with an overview of first-principles, machine learning, and hybrid battery models. Then, a typical pipeline for the development of interpretable machine learning models is explained and showcased for cycle life prediction from laboratory testing data. We highlight the challenges of machine learning models, motivating the incorporation of physics in hybrid modeling approaches, which are needed to decipher the aging trajectory of batteries but require more data and further work on the physics of battery degradation. The tutorial closes with a discussion on generalization and further research directions.
- A. Yoshino, “The birth of the lithium-ion battery,” Angewandte Chemie International Edition, vol. 51, no. 24, pp. 5798–5800, 2012.
- N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-ion battery materials: Present and future,” Materials Today, vol. 18, no. 5, pp. 252–264, 2015.
- C. R. Birkl, M. R. Roberts, E. McTurk, P. G. Bruce, and D. A. Howey, “Degradation diagnostics for lithium ion cells,” Journal of Power Sources, vol. 341, pp. 373–386, 2017.
- J. S. Edge, S. O’Kane, R. Prosser, N. D. Kirkaldy, A. N. Patel, A. Hales, A. Ghosh, W. Ai, J. Chen, J. Yang, S. Li, M.-C. Pang, L. Bravo Diaz, A. Tomaszewska, M. W. Marzook, K. N. Radhakrishnan, H. Wang, Y. Patel, B. Wu, and G. J. Offer, “Lithium ion battery degradation: What you need to know,” Physical Chemistry Chemical Physics, vol. 23, no. 14, pp. 8200–8221, 2021.
- K. A. Severson, P. M. Attia, N. Jin, N. Perkins, B. Jiang, Z. Yang, M. H. Chen, M. Aykol, P. K. Herring, D. Fraggedakis, M. Z. Bazant, S. J. Harris, W. C. Chueh, and R. D. Braatz, “Data-driven prediction of battery cycle life before capacity degradation,” Nature Energy, vol. 4, no. 5, pp. 383–391, 2019.
- P. Herring, C. B. Gopal, M. Aykol, J. H. Montoya, A. Anapolsky, P. M. Attia, W. Gent, J. S. Hummelshøj, L. Hung, H.-K. Kwon, P. Moore, D. Schweigert, K. A. Severson, S. Suram, Z. Yang, R. D. Braatz, and B. D. Storey, “BEEP: A Python library for battery evaluation and early prediction,” SoftwareX, vol. 11, p. 100506, 2020.
- V. Sulzer, P. Mohtat, S. Lee, J. B. Siegel, and A. G. Stefanopoulou, “Promise and challenges of a data-driven approach for battery lifetime prognostics,” in Proceedings of the American Control Conference, 2021, pp. 4427–4433.
- J. Schaeffer, E. Lenz, W. C. Chueh, M. Z. Bazant, R. Findeisen, and R. D. Braatz, “Interpretation of high-dimensional linear regression: Effects of nullspace and regularization demonstrated on battery data,” Computers & Chemical Engineering, vol. 180, p. 108471, 2024.
- P. M. Attia, A. Grover, N. Jin, K. A. Severson, T. M. Markov, Y.-H. Liao, M. H. Chen, B. Cheong, N. Perkins, Z. Yang, P. K. Herring, M. Aykol, S. J. Harris, R. D. Braatz, S. Ermon, and W. C. Chueh, “Closed-loop optimization of fast-charging protocols for batteries with machine learning,” Nature, vol. 578, no. 7795, pp. 397–402, 2020.
- A. Geslin, B. van Vlijmen, X. Cui, A. Bhargava, P. A. Asinger, R. D. Braatz, and W. C. Chueh, “Selecting the appropriate features in battery lifetime predictions,” Joule, vol. 7, pp. P1956–1965, 2023.
- L. Ward, S. Babinec, E. J. Dufek, D. A. Howey, V. Viswanathan, M. Aykol, D. A. Beck, B. Blaiszik, B.-R. Chen, G. Crabtree, S. Clark, V. De Angelis, P. Dechent, M. Dubarry, E. E. Eggleton, D. P. Finegan, I. Foster, C. B. Gopal, P. K. Herring, V. W. Hu, N. H. Paulson, Y. Preger, D. Uwe-Sauer, K. Smith, S. W. Snyder, S. Sripad, T. R. Tanim, and L. Teo, “Principles of the battery data genome,” Joule, vol. 6, no. 10, pp. 2253–2271, 2022.
- M. Dubarry and D. Beck, “Big data training data for artificial intelligence-based Li-ion diagnosis and prognosis,” Journal of Power Sources, vol. 479, p. 228806, 2020.
- Y. Preger, H. M. Barkholtz, A. Fresquez, D. L. Campbell, B. W. Juba, J. Romàn-Kustas, S. R. Ferreira, and B. Chalamala, “Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions,” Journal of The Electrochemical Society, vol. 167, no. 12, p. 120532, 2020.
- M. Aykol, C. B. Gopal, A. Anapolsky, P. K. Herring, B. van Vlijmen, M. D. Berliner, M. Z. Bazant, R. D. Braatz, W. C. Chueh, and B. D. Storey, “Perspective—Combining physics and machine learning to predict battery lifetime,” Journal of The Electrochemical Society, vol. 168, no. 3, p. 030525, 2021.
- B. V. Vlijmen, P. A. Asinger, V. Lam, X. Cui, S. Sun, P. K. Herring, C. Balaji, N. Geise, H. D. Deng, H. L. Thaman, S. Dongmin, A. Trewartha, A. Anapolsky, B. D. Storey, E. William, R. D. Braatz, and W. C. Chueh, “Interpretable data-driven modeling reveals complexity of battery aging,” pp. 1–19, 2023, chemRxiv preprint, https://arxiv.org/abs/2309.00564.
- K. Liu, Y. Liu, D. Lin, A. Pei, and Y. Cui, “Materials for lithium-ion battery safety,” Science Advances, vol. 4, no. 6, p. eaas9820, 2018.
- G. Galuppini, M. D. Berliner, H. Lian, D. Zhuang, M. Z. Bazant, and R. D. Braatz, “Efficient computation of safe, fast charging protocols for multiphase lithium-ion batteries: A lithium iron phosphate case study,” Journal of Power Sources, vol. 580, p. 233272, 2023.
- ——, “Efficient computation of robust, safe, fast charging protocols for lithium-ion batteries,” Control Engineering Practice, vol. 145, p. 105856, 2024.
- U. Krewer, F. Röder, E. Harinath, R. D. Braatz, B. Bedürftig, and R. Findeisen, “Review—Dynamic models of Li-ion batteries for diagnosis and operation: A review and perspective,” Journal of The Electrochemical Society, vol. 165, no. 16, pp. A3656–A3673, 2018.
- J. Butler, “Studies in heterogeneous equilibria. Part III. A kinetic theory of reversible oxidation potentials at inert electrodes,” Transactions of the Faraday Society, vol. 19, no. March, pp. 734–739, 1924.
- D. Fraggedakis, M. McEldrew, R. B. Smith, Y. Krishnan, Y. Zhang, P. Bai, W. C. Chueh, Y. Shao-Horn, and M. Z. Bazant, “Theory of coupled ion-electron transfer kinetics,” Electrochimica Acta, vol. 367, p. 137432, 2021.
- J. Newman and W. Tiedemann, “Porous-electrode theory with battery applications,” AIChE Journal, vol. 21, no. 1, pp. 25–41, 1975.
- F. Röder, R. D. Braatz, and U. Krewer, “Multi-scale simulation of heterogeneous surface film growth mechanisms in lithium-ion batteries,” Journal of The Electrochemical Society, vol. 164, no. 11, pp. E3335–E3344, 2017.
- R. B. Smith and M. Z. Bazant, “Multiphase porous electrode theory,” Journal of The Electrochemical Society, vol. 164, no. 11, pp. E3291–E3310, 2017.
- M. D. Berliner, D. A. Cogswell, M. Z. Bazant, and R. D. Braatz, “Methods—PETLION: Open-source software for millisecond-scale porous electrode theory-based lithium-ion battery simulations,” Journal of The Electrochemical Society, vol. 168, no. 9, p. 090504, 2021.
- M. B. Pinson and M. Z. Bazant, “Theory of SEI formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime prediction,” Journal of The Electrochemical Society, vol. 160, no. 2, pp. A243–A250, 2012.
- J. M. Reniers, G. Mulder, and D. A. Howey, “Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries,” Journal of The Electrochemical Society, vol. 166, no. 14, pp. A3189–A3200, 2019.
- T. Gao, Y. Han, D. Fraggedakis, S. Das, T. Zhou, C.-N. Yeh, S. Xu, W. C. Chueh, J. Li, and M. Z. Bazant, “Interplay of lithium intercalation and plating on a single graphite particle,” Joule, vol. 5, no. 2, pp. 393–414, 2021.
- A. Jana, A. S. Mitra, S. Das, W. C. Chueh, M. Z. Bazant, and R. E. García, “Physics-based, reduced order degradation model of lithium-ion batteries,” Journal of Power Sources, vol. 545, p. 231900, 2022.
- M. El-Dalahmeh, M. Al-Greer, M. El-Dalahmeh, and I. Bashir, “Physics-based model informed smooth particle filter for remaining useful life prediction of lithium-ion battery,” Measurement, vol. 214, p. 112838, 2023.
- A. Downey, Y.-H. Lui, C. Hu, S. Laflamme, and S. Hu, “Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds,” Reliability Engineering & System Safety, vol. 182, pp. 1–12, 2019.
- S. E. O’Kane, W. Ai, G. Madabattula, D. Alonso-Alvarez, R. Timms, V. Sulzer, J. S. Edge, B. Wu, G. J. Offer, and M. Marinescu, “Lithium-ion battery degradation: how to model it,” Physical Chemistry Chemical Physics, vol. 24, no. 13, pp. 7909–7922, 2022.
- M. D. Berliner, H. Zhao, S. Das, M. Forsuelo, B. Jiang, W. H. Chueh, M. Z. Bazant, and R. D. Braatz, “Nonlinear identifiability analysis of the porous electrode theory model of lithium-ion batteries,” Journal of The Electrochemical Society, vol. 168, no. 9, p. 090546, 2021.
- G. Galuppini, M. D. Berliner, D. A. Cogswell, D. Zhuang, M. Z. Bazant, and R. D. Braatz, “Nonlinear identifiability analysis of multiphase porous electrode theory-based battery models: A lithium iron phosphate case study,” Journal of Power Sources, vol. 573, p. 233009, 2023.
- G. Pozzato and S. Onori, “Combining physics-based and machine learning methods to accelerate innovation in sustainable transportation and beyond: a control perspective,” in Proceedings of the American Control Conference, 2023, pp. 640–653.
- S. Greenbank and D. Howey, “Automated feature extraction and selection for data-driven models of rapid battery capacity fade and end of life,” IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 2965–2973, 2021.
- J. Schaeffer, P. Gasper, E. Garcia-Tamayo, R. Gasper, M. Adachi, J. P. Gaviria-Cardona, S. Montoya-Bedoya, A. Bhutani, A. Schiek, R. Goodall, R. Findeisen, R. D. Braatz, and S. Engelke, “Machine learning benchmarks for the classification of equivalent circuit models from electrochemical impedance spectra,” Journal of The Electrochemical Society, vol. 170, no. 6, p. 060512, 2023.
- P. K. Jones, U. Stimming, and A. A. Lee, “Impedance-based forecasting of lithium-ion battery performance amid uneven usage,” Nature Communications, vol. 13, no. 1, pp. 1–9, 2022.
- K. Zhang, J. Yin, and Y. He, “Acoustic emission detection and analysis method for health status of lithium ion batteries,” Sensors, vol. 21, no. 3, p. 712, 2021.
- V. Ramadesigan, K. Chen, N. A. Burns, V. Boovaragavan, R. D. Braatz, and V. R. Subramanian, “Parameter estimation and capacity fade analysis of lithium-ion batteries using reformulated models,” Journal of The Electrochemical Society, vol. 158, no. 9, pp. A1048 – A1054, 2011.
- M. D. Berliner, “Simulating, Controlling, and Understanding Lithium-ion Battery Models,” Ph.D. dissertation, Massachusetts Institute of Technology, 2023.
- M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.
- K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of Big Data, vol. 3, no. 1, pp. 1–40, 2016.
- S. Shen, M. Sadoughi, M. Li, Z. Wang, and C. Hu, “Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries,” Applied Energy, vol. 260, p. 114296, 2020.
- C. Vidal, P. Kollmeyer, E. Chemali, and A. Emadi, “Li-ion battery state of charge estimation using long short-term memory recurrent neural network with transfer learning,” in IEEE Transportation Electrification Conference and Expo, 2019, pp. 1–6.
- N. H. Paulson, J. Kubal, L. Ward, S. Saxena, W. Lu, and S. J. Babinec, “Feature engineering for machine learning enabled early prediction of battery lifetime,” Journal of Power Sources, vol. 527, p. 231127, 2022.
- V. Sulzer, P. Mohtat, A. Aitio, S. Lee, Y. T. Yeh, F. Steinbacher, M. U. Khan, J. W. Lee, J. B. Siegel, A. G. Stefanopoulou, and D. A. Howey, “The challenge and opportunity of battery lifetime prediction from field data,” Joule, vol. 5, no. 8, pp. 1934–1955, 2021.
- J. Schaeffer and R. D. Braatz, “Latent Variable Method Demonstrator – Software for understanding multivariate data analytics algorithms,” Computers & Chemical Engineering, vol. 167, p. 108014, 2022.
- W. Sun and R. D. Braatz, “Smart process analytics for predictive modeling,” Computers & Chemical Engineering, vol. 144, p. 107134, 2021.