Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Minor Containment and Disjoint Paths in almost-linear time (2404.03958v1)

Published 5 Apr 2024 in cs.DS and math.CO

Abstract: We give an algorithm that, given graphs $G$ and $H$, tests whether $H$ is a minor of $G$ in time ${\cal O}H(n{1+o(1)})$; here, $n$ is the number of vertices of $G$ and the ${\cal O}_H(\cdot)$-notation hides factors that depend on $H$ and are computable. By the Graph Minor Theorem, this implies the existence of an $n{1+o(1)}$-time membership test for every minor-closed class of graphs. More generally, we give an ${\cal O}{H,|X|}(m{1+o(1)})$-time algorithm for the rooted version of the problem, in which $G$ comes with a set of roots $X\subseteq V(G)$ and some of the branch sets of the sought minor model of $H$ are required to contain prescribed subsets of $X$; here, $m$ is the total number of vertices and edges of $G$. This captures the Disjoint Paths problem, for which we obtain an ${\cal O}_{k}(m{1+o(1)})$-time algorithm, where $k$ is the number of terminal pairs. For all the mentioned problems, the fastest algorithms known before are due to Kawarabayashi, Kobayashi, and Reed [JCTB 2012], and have a time complexity that is quadratic in the number of vertices of $G$. Our algorithm has two main ingredients: First, we show that by using the dynamic treewidth data structure of Korhonen, Majewski, Nadara, Pilipczuk, and Soko{\l}owski [FOCS 2023], the irrelevant vertex technique of Robertson and Seymour can be implemented in almost-linear time on apex-minor-free graphs. Then, we apply the recent advances in almost-linear time flow/cut algorithms to give an almost-linear time implementation of the recursive understanding technique, which effectively reduces the problem to apex-minor-free graphs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com