Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust finite element solvers for distributed hyperbolic optimal control problems (2404.03756v1)

Published 4 Apr 2024 in math.NA, cs.NA, and math.OC

Abstract: We propose, analyze, and test new robust iterative solvers for systems of linear algebraic equations arising from the space-time finite element discretization of reduced optimality systems defining the approximate solution of hyperbolic distributed, tracking-type optimal control problems with both the standard $L2$ and the more general energy regularizations. In contrast to the usual time-stepping approach, we discretize the optimality system by space-time continuous piecewise-linear finite element basis functions which are defined on fully unstructured simplicial meshes. If we aim at the asymptotically best approximation of the given desired state $y_d$ by the computed finite element state $y_{\varrho h}$, then the optimal choice of the regularization parameter $\varrho$ is linked to the space-time finite element mesh-size $h$ by the relations $\varrho=h4$ and $\varrho=h2$ for the $L2$ and the energy regularization, respectively. For this setting, we can construct robust (parallel) iterative solvers for the reduced finite element optimality systems. These results can be generalized to variable regularization parameters adapted to the local behavior of the mesh-size that can heavily change in the case of adaptive mesh refinements. The numerical results illustrate the theoretical findings firmly.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. O. Axelsson and J. Karátson. Superior properties of the PRESB preconditioner for operators on two-by-two block form with square blocks. Numer. Math, 146(2):335–368, 2020.
  2. An efficient preconditioning method for state box-constrained optimal control problems. J. Numer. Math., 26(4):185–207, 2018.
  3. I. Babuška and M. Vogelius. Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math., 44:75–102, 1984.
  4. Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal., 33(1):343–369, 2013.
  5. Matrix Analysis and Computations. SIAM, 2021.
  6. Numerical solution of saddle point problems. Acta Numer., 14:1–137, 2005.
  7. J. Bey. Tetrahedral grid refinement. Computing, 55:355–378, 1995.
  8. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comp., 50(181):1–17, 1988.
  9. M. Dauge. Elliptic Boundary Value Problems on Corner Domains, volume 1341 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 1988.
  10. J. De los Reyes. Numerical PDE-Constrained Optimization. Springer Cham, 2015.
  11. I. Dravins and M. Neytcheva. On the Numerical Solution of State- and Control-constrained Optimal Control Problems. Department of Information Technology, Uppsala Universitet, 2021.
  12. Finite elements and fast iterative solvers: With applications in incompressible fluid dynamics. Oxford University Press, 2005.
  13. Regularization and finite element error estimates for elliptic distributed optimal control problems with energy regularization and state or control constraints, 2023. arXiv:2306.15316.
  14. P. Grisvard. Elliptic problems in nonsmooth domains, volume 69 of Classics in Applied Mathematics. SIAM, Philadelphia, 2011.
  15. Optimization and Control for Partial Differential Equations, volume 29 of Radon Series on Computational and Applied Mathematics. de Gruyter, 2022.
  16. The primal-dual active set method as a semismooth Newton method. SIAM J. Optimization, 13:865–888, 2003.
  17. Optimization with PDE Constraints, volume 23 of Mathematical Modelling: Theory and Applications. Springer-Verlag, Berlin, 2009.
  18. Multigrid preconditioners and their applications. In G. Telschow, editor, Third Multigrid Seminar, Biesenthal 1988, pages 11–52, Karl–Weierstrass–Institut Berlin, Report R–MATH–03/89, 1989.
  19. K. Kunisch and S. Reiterer. A Gautschi time-stepping approach to optimal control of the wave equation. Appl. Numer. Math., 90:55–76, 2015.
  20. O. A. Ladyzhenskaya. The boundary value problems of mathematical physics, volume 49 of Applied Mathematical Sciences. Springer, New York, 1985.
  21. Mass-lumping discretization and solvers for distributed elliptic optimal control problems, 2023. arXiv:2304.14664.
  22. An adaptive finite element method for distributed elliptic optimal control problems with variable energy regularization. Comput. Math. Appl., 160:1–14, 2024.
  23. Space-time finite element discretization of parabolic optimal control problems with energy regularization. SIAM J. Numer. Anal., 59(2):660–674, 2021.
  24. Unstructured space-time finite element methods for optimal control of parabolic equation. SIAM J. Sci. Comput., 43(2):A744–A771, 2021.
  25. J. L. Lions. Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod Gauthier-Villars, Paris, 1968.
  26. R. Löscher and O. Steinbach. Space-time finite element methods for distributed optimal control of the wave equation. SIAM J. Numer. Anal., 62(1):452–475, 2024.
  27. K.-A. Mardal and R. Winther. Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl., 18(1):1–40, 2011.
  28. M. Neumüller and O. Steinbach. Regularization error estimates for distributed control problems in energy spaces. Math. Methods Appl. Sci., 44:4176–4191, 2021.
  29. Preconditioners for state-constrained optimal control problems with moreau-yosida penalty function. Numer. Linear Algebra Appl., 21(1):81–97, 2014.
  30. J. Pearson and A. Wathen. A new approximation of the Schur complement in preconditioners for PDE-constrained optimization. Numer. Linear Algebra Appl., 12(5):816–829, 2012.
  31. G. Peralta and K. Kunisch. Mixed and hybrid Petrov–Galerkin finite element discretization for optimal control of the wave equation. Numer. Math., 150:591–627, 2022.
  32. M. Rozložníík. Saddle-Point Problems and Their Iterative Solution. Nec̆as Center Series. Birkhäuser Cham, 2018.
  33. J. W. Ruge and K. Stüben. Algebraic multigrid (AMG). In S. F. McCormick, editor, Multigrid Methods, pages 73–130. SIAM, Philadelphia, 1987.
  34. A. Schiela and S. Ulbrich. Operator preconditioning for a class of inequality constrained optimal control problems. SIAM J. Optim., 24(1):435–466, 2014.
  35. J. Schöberl and W. Zulehner. Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl., 29:752–773, 2007.
  36. V. Schulz and G. Wittum. Transforming smoothers for pde constrained optimization problems. Comput. Visual. Sci., 11:207–219, 2008.
  37. L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54(190):483–493, 1990.
  38. O. Steinbach and M. Zank. Coercive space-time finite element methods for initial boundary value problems. Electron. Trans. Numer. Anal., 52:154–194, 2020.
  39. O. Steinbach and M. Zank. A generalized inf-sup stable variational formulation for the wave equation. J. Math. Anal. Appl., 505(1):Paper No. 125457, 24, 2022.
  40. R. Stevenson. The completion of locally refined simplicial partitions created by bisection. Math. Comp., 77(261):227–241, 2008.
  41. M. Stoll and A. Wathen. Preconditioning for partial differential equation constrained optimization with control constraints. Numer. Linear Algebra Appl., 19:53–71, 2012.
  42. F. Tröltzsch. Optimal control of partial differential equations: Theory, methods and applications, volume 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island, 2010.
  43. A. Wathen. Preconditioning. Acta Numerica, 24:329–376, 2015.
  44. M. Zank. Inf-sup stable space-time methods for time-dependent partial differential equations, volume 38 of Computation in Engineering and Science. Verlag der Technischen Universität Graz, 2020.
  45. W. Zulehner. Analysis of iterative methods for saddle point problems: a unified approach. Math. Comp., 71(238):479–505, 2002.

Summary

We haven't generated a summary for this paper yet.