Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Matrix-Free Geometric Multigrid Preconditioning Of Combined Newton-GMRES For Solving Phase-Field Fracture With Local Mesh Refinement (2404.03265v2)

Published 4 Apr 2024 in math.NA and cs.NA

Abstract: In this work, the matrix-free solution of quasi-static phase-field fracture problems is further investigated. More specifically, we consider a quasi-monolithic formulation in which the irreversibility constraint is imposed with a primal-dual active set method. The resulting nonlinear problem is solved with a line-search assisted Newton method. Therein, the arising linear equation systems are solved with a generalized minimal residual method (GMRES), which is preconditioned with a matrix-free geometric multigrid method including geometric local mesh refinement. Our solver is substantiated with a numerical test on locally refined meshes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. L. Ambrosio and V. M. Tortorelli. Approximation of functional depending on jumps by elliptic functional via t-convergence. Comm. Pure Appl. Math, 43(8):999–1036, 1990.
  2. L. Ambrosio and V. M. Tortorelli. On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7), 6(1):105–123, 1992.
  3. The deal.II library, version 9.4. J. Numer. Math., 30(3):231–246, 2022.
  4. Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids, 48(4):797–826, 2000.
  5. Performance portable solid mechanics via matrix-free p𝑝pitalic_p-multigrid, 2022.
  6. A flexible, parallel, adaptive geometric multigrid method for FEM. ACM Trans. Math. Softw., 47(1):1–27, 2021.
  7. A matrix-free approach for finite-strain hyperelastic problems using geometric multigrid. Int. J. Numer. Methods. Eng., 121(13):2874–2895, 2020.
  8. G. Francfort and J.-J. Marigo. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids, 46(8):1319–1342, 1998.
  9. High-order matrix-free incompressible flow solvers with GPU acceleration and low-order refined preconditioners. Comput. Fluids, 203:104541, 2020.
  10. On the implementation of a robust and efficient finite element-based parallel solver for the compressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng., 389:114250, 2022.
  11. A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput. Methods Appl. Mech. Engrg., 290:466–495, 2015.
  12. S. Hüeber and B. Wohlmuth. A primal–dual active set strategy for non-linear multibody contact problems. Comput. Methods Appl. Mech. Engrg., 194(27):3147–3166, 2005.
  13. B. Janssen and G. Kanschat. Adaptive Multilevel Methods with Local Smoothing for H1superscript𝐻1H^{1}italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT- and Hc⁢u⁢r⁢lsuperscript𝐻𝑐𝑢𝑟𝑙H^{curl}italic_H start_POSTSUPERSCRIPT italic_c italic_u italic_r italic_l end_POSTSUPERSCRIPT-Conforming High Order Finite Element Methods. SIAM Journal on Scientific Computing, 33(4):2095–2114, 2011.
  14. Matrix-free multigrid solvers for phase-field fracture problems. Comput. Methods Appl. Mech. Engrg., 372:113431, 2020.
  15. Parallel matrix-free higher-order finite element solvers for phase-field fracture problems. Math. Comp. Appl., 25(3):40, 2020.
  16. Matrix-free Monolithic Multigrid Methods for Stokes and Generalized Stokes Problems. SIAM Journal on Scientific Computing, 2024. accepted for publication.
  17. L. Kolditz and K. Mang. On the relation of gamma-convergence parameters for pressure-driven quasi-static phase-field fracture. Ex. Count., 2:100047, 2022.
  18. A modified combined active-set newton method for solving phase-field fracture into the monolithic limit. Comput. Methods Appl. Mech. Engrg., 414:116170, 2023.
  19. M. Kronbichler and K. Kormann. A generic interface for parallel cell-based finite element operator application. Computers & Fluids, 63:135–147, 2012.
  20. M. Kronbichler and K. Kormann. Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM Trans. Math. Softw., 45(3):1–40, 2019.
  21. M. Kronbichler and K. Ljungkvist. Multigrid for matrix-free high-order finite element computations on graphics processors. ACM Trans. Parallel Comput., 6(1), 2019.
  22. Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium. GEM - International Journal on Geomathematics, 10(1), Jan 2019.
  23. Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations, 2022.
  24. hyper.deal: An efficient, matrix-free finite-element library for high-dimensional partial differential equations. ACM Trans. Math. Softw., 47(4):1–34, 2021.
  25. A finite deformation mortar contact formulation using a primal–dual active set strategy. Int. J. Numer. Meth. Engng., 79(11):1354–1391, 2009.
  26. A selection of benchmark problems in solid mechanics and applied mathematics. Arch. Comput. Methods Eng., 28(2):713–751, 2021.
  27. B. Schröder and D. Kuhl. A semi-smooth Newton method for dynamic multifield plasticity. PAMM, 16(1):767–768, 2016.
  28. I. N. Sneddon and M. Lowengrub. Crack problems in the classical theory of elasticity. SIAM Ser. Appl. Meth. John Wiley and Sons, Philadelphia, 1969.
  29. M. Wichrowski and P. Krzyzanowski. A matrix-free multilevel preconditioner for the generalized stokes problem with discontinuous viscosity. Journal of Computational Science, 63:101804, 2022.
  30. Exploiting high-contrast stokes preconditioners to efficiently solve incompressible fluid-structure interaction problems, 2023.
  31. T. Wick. Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers, volume 28. Walter de Gruyter GmbH & Co KG, 2020.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.