Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exploring Emotions in Multi-componential Space using Interactive VR Games (2404.03239v1)

Published 4 Apr 2024 in cs.HC, cs.AI, and cs.LG

Abstract: Emotion understanding is a complex process that involves multiple components. The ability to recognise emotions not only leads to new context awareness methods but also enhances system interaction's effectiveness by perceiving and expressing emotions. Despite the attention to discrete and dimensional models, neuroscientific evidence supports those emotions as being complex and multi-faceted. One framework that resonated well with such findings is the Component Process Model (CPM), a theory that considers the complexity of emotions with five interconnected components: appraisal, expression, motivation, physiology and feeling. However, the relationship between CPM and discrete emotions has not yet been fully explored. Therefore, to better understand emotions underlying processes, we operationalised a data-driven approach using interactive Virtual Reality (VR) games and collected multimodal measures (self-reports, physiological and facial signals) from 39 participants. We used Machine Learning (ML) methods to identify the unique contributions of each component to emotion differentiation. Our results showed the role of different components in emotion differentiation, with the model including all components demonstrating the most significant contribution. Moreover, we found that at least five dimensions are needed to represent the variation of emotions in our dataset. These findings also have implications for using VR environments in emotion research and highlight the role of physiological signals in emotion recognition within such environments.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube