Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Unconstrained Head Pose Estimation in the Wild (2404.02544v3)

Published 3 Apr 2024 in cs.CV

Abstract: Existing research on unconstrained in-the-wild head pose estimation suffers from the flaws of its datasets, which consist of either numerous samples by non-realistic synthesis or constrained collection, or small-scale natural images yet with plausible manual annotations. This makes fully-supervised solutions compromised due to the reliance on generous labels. To alleviate it, we propose the first semi-supervised unconstrained head pose estimation method SemiUHPE, which can leverage abundant easily available unlabeled head images. Technically, we choose semi-supervised rotation regression and adapt it to the error-sensitive and label-scarce problem of unconstrained head pose. Our method is based on the observation that the aspect-ratio invariant cropping of wild heads is superior to previous landmark-based affine alignment given that landmarks of unconstrained human heads are usually unavailable, especially for underexplored non-frontal heads. Instead of using a pre-fixed threshold to filter out pseudo labeled heads, we propose dynamic entropy based filtering to adaptively remove unlabeled outliers as training progresses by updating the threshold in multiple stages. We then revisit the design of weak-strong augmentations and improve it by devising two novel head-oriented strong augmentations, termed pose-irrelevant cut-occlusion and pose-altering rotation consistency respectively. Extensive experiments and ablation studies show that SemiUHPE outperforms its counterparts greatly on public benchmarks under both the front-range and full-range settings. Furthermore, our proposed method is also beneficial for solving other closely related problems, including generic object rotation regression and 3D head reconstruction, demonstrating good versatility and extensibility. Code is in https://github.com/hnuzhy/SemiUHPE.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com