Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

K-percent Evaluation for Lifelong RL (2404.02113v3)

Published 2 Apr 2024 in cs.LG

Abstract: In continual or lifelong reinforcement learning, access to the environment should be limited. If we aspire to design algorithms that can run for long periods, continually adapting to new, unexpected situations, then we must be willing to deploy our agents without tuning their hyperparameters over the agent's entire lifetime. The standard practice in deep RL, and even continual RL, is to assume unfettered access to the deployment environment for the full lifetime of the agent. In this paper, we propose a new approach for evaluating lifelong RL agents where only k percent of the experiment data can be used for hyperparameter tuning. We then conduct an empirical study of DQN and SAC across a variety of continuing and non-stationary domains. We find agents generally perform poorly when restricted to k-percent tuning, whereas several algorithmic mitigations designed to maintain network plasticity perform surprisingly well.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets