Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Order-Optimal Regret with Novel Policy Gradient Approaches in Infinite-Horizon Average Reward MDPs (2404.02108v2)

Published 2 Apr 2024 in cs.LG

Abstract: We present two Policy Gradient-based algorithms with general parametrization in the context of infinite-horizon average reward Markov Decision Process (MDP). The first one employs Implicit Gradient Transport for variance reduction, ensuring an expected regret of the order $\tilde{\mathcal{O}}(T{2/3})$. The second approach, rooted in Hessian-based techniques, ensures an expected regret of the order $\tilde{\mathcal{O}}(\sqrt{T})$. These results significantly improve the state-of-the-art $\tilde{\mathcal{O}}(T{3/4})$ regret and achieve the theoretical lower bound. We also show that the average-reward function is approximately $L$-smooth, a result that was previously assumed in earlier works.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets