Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards a Completeness Argumentation for Scenario Concepts (2404.01934v1)

Published 2 Apr 2024 in cs.SE

Abstract: Scenario-based testing has become a promising approach to overcome the complexity of real-world traffic for safety assurance of automated vehicles. Within scenario-based testing, a system under test is confronted with a set of predefined scenarios. This set shall ensure more efficient testing of an automated vehicle operating in an open context compared to real-world testing. However, the question arises if a scenario catalog can cover the open context sufficiently to allow an argumentation for sufficiently safe driving functions and how this can be proven. Within this paper, a methodology is proposed to argue a sufficient completeness of a scenario concept using a goal structured notation. Thereby, the distinction between completeness and coverage is discussed. For both, methods are proposed for a streamlined argumentation and regarding evidence. These methods are applied to a scenario concept and the inD dataset to prove the usability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. H. Winner, K. Lemmer, T. Form, and J. Mazzega, “PEGASUS—first steps for the safe introduction of automated driving,” in Lecture Notes in Mobility.   Springer International Publishing, jun 2018, pp. 185–195.
  2. H. Weber, C. Glasmacher, M. Schuldes, N. Wagener, and L. Eckstein, “Holistic driving scenario concept for urban traffic,” pp. 1–8, 2023.
  3. International Standartization Organization, “Road vehicles - test scenarios for automated driving systems - vocabulary,” 2022.
  4. S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer, “Defining and substantiating the terms scene, situation, and scenario for automated driving,” in 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC 2015).   Piscataway, NJ: IEEE, 2015, pp. 982–988.
  5. S. Geyer, M. Kienle, B. Franz, H. Winner, K. Bengler, M. Baltzer, et al., “Concept and development of a unified ontology for generating test and use-case catalogues for assisted and automated vehicle guidance,” IET Intelligent Transport Systems, vol. 8, no. 3, pp. 183–189, may 2014.
  6. E. de Gelder, J. P. Paardekooper, A. K. Saberi, H. Elrofai, O. O. den Camp., S. Kraines, et al., “Towards an ontology for scenario definition for the assessment of automated vehicles: An object-oriented framework,” Jan. 2020.
  7. C. Glasmacher, M. Schuldes, P. Topalakatti, P. Hristov, H. Weber, and L. Eckstein, “Scenario-based model of the odd through scenario databases,” 2023. [Online]. Available: https://www.vvm-projekt.de/en/publications
  8. M. Scholtes, L. Westhofen, L. R. Turner, K. Lotto, M. Schuldes, H. Weber, et al., “6-layer model for a structured description and categorization of urban traffic and environment,” IEEE Access, vol. 9, pp. 59 131–59 147, 2021.
  9. L. Guyonvarch, T. Hermitte, E. Lecuyer, A. Saulgrain, R. Krishnakumar, V. Herve, et al., “Data driven scenarios for ad/adas validation,” ADAS Validation, 2019.
  10. National Highway Traffic Safety Administration, “2020 fars/crss coding and validation manual,” US Department of Transportation, Washington, DC, Tech. Rep., 2022.
  11. Gesamtverband der Deutschen Versicherungswirtschaft, “Auswertung von straßenverkehrsunfällen teil 1: Führen und auswerten von unfalltypensteckkarten.”
  12. H. Feifel and M. Wagner, “Harmonized scenarios for the evaluation of active safety systems based on in-depth-accident data,” in 8th International Conference Expert Symposium on Accident Research (ESAR), Hannover, Germany, April 19-20, 2018.
  13. J. Bach, S. Otten, and E. Sax, “Model based scenario specification for development and test of automated driving functions,” in 2016 IEEE Intelligent Vehicles Symposium (IV).   Piscataway, NJ: IEEE, 2016, pp. 1149–1155.
  14. E. de Gelder, O. O. den Camp, and N. de Boer, “Scenario categories for the assessment of automated vehicles,” CETRAN, Tech. Rep., 2020.
  15. H. Weber, J. Bock, J. Klimke, C. Roesener, J. Hiller, R. Krajewski, et al., “A framework for definition of logical scenarios for safety assurance of automated driving,” Traffic Injury Prevention, vol. 20, no. sup1, pp. S65–S70, jun 2019.
  16. International Standardization Organisation, “Road vehicles safety of the intended functionality,” 2022.
  17. L. Hartjen, R. Philipp, F. Schuldt, and B. Friedrich, “Saturation effects in recorded maneuver data for the test of automated driving,” Uni-DAS, 2020.
  18. C. Glasmacher, M. Schuldes, H. Weber, N. Wagener, and L. Eckstein, “Acquire driving scenarios efficiently: A framework for prospective assessment of cost-optimal scenario acquisition,” 2023.
  19. C. Neurohr, L. Westhofen, M. Butz, M. H. Bollmann, U. Eberle, and R. Galbas, “Criticality analysis for the verification and validation of automated vehicles,” IEEE Access, vol. 9, pp. 18 016–18 041, 2021.
  20. International Standartization Organization, “Systems and software engineering systems and software assurance - part 2: Assurance case,” 2022.
  21. F. Warg and M. Skoglund, “Argument patterns for multi-concern assurance of connected automated driving systems,” in 4th International Workshop on Security and Dependability of Critical Embedded Real-Time Systems (CERTS 2019).   Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.
  22. A. Rudolph, S. Voget, and J. Mottok, “A consistent safety case argumentation for artificial intelligence in safety related automotive systems,” in ERTS 2018, 2018.
  23. F. Favaro, L. Fraade-Blanar, S. Schnelle, T. Victor, M. Peña, J. Engstrom, et al., “Building a credible case for safety: Waymo’s approach for the determination of absence of unreasonable risk,” arXiv preprint arXiv:2306.01917.
  24. T. Brade and C. Glasmacher, “Towards a sufficient odd completeness,” 2023. [Online]. Available: https://www.vvm-projekt.de/final-event
  25. N. Weber, C. Thiem, and U. Konigorski, “A needle in a haystack – how to derive relevant scenarios for testing automated driving systems in urban areas,” Sept. 2021.
  26. J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein, “The ind dataset: A drone dataset of naturalistic road user trajectories at german intersections,” in 2020 IEEE Intelligent Vehicles Symposium (IV), 2020, pp. 1929–1934.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Christoph Glasmacher (5 papers)
  2. Hendrik Weber (45 papers)
  3. Lutz Eckstein (42 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com