Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Classifying Cancer Stage with Open-Source Clinical Large Language Models (2404.01589v1)

Published 2 Apr 2024 in cs.CL and cs.AI

Abstract: Cancer stage classification is important for making treatment and care management plans for oncology patients. Information on staging is often included in unstructured form in clinical, pathology, radiology and other free-text reports in the electronic health record system, requiring extensive work to parse and obtain. To facilitate the extraction of this information, previous NLP approaches rely on labeled training datasets, which are labor-intensive to prepare. In this study, we demonstrate that without any labeled training data, open-source clinical LLMs can extract pathologic tumor-node-metastasis (pTNM) staging information from real-world pathology reports. Our experiments compare LLMs and a BERT-based model fine-tuned using the labeled data. Our findings suggest that while LLMs still exhibit subpar performance in Tumor (T) classification, with the appropriate adoption of prompting strategies, they can achieve comparable performance on Metastasis (M) classification and improved performance on Node (N) classification.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. “Cancer of Any Site - Cancer Stat Facts.” [Online]. Available: https://seer.cancer.gov/statfacts/html/all.html
  2. “FastStats,” Jan. 2024. [Online]. Available: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
  3. “Cancer Staging Systems.” [Online]. Available: https://www.facs.org/quality-programs/cancer-programs/american-joint-committee-on-cancer/cancer-staging-systems/
  4. “American Joint Committee on Cancer | SEER Training.” [Online]. Available: https://training.seer.cancer.gov/staging/systems/ajcc/
  5. S. Gao, M. T. Young, J. X. Qiu, H.-J. Yoon, J. B. Christian, P. A. Fearn, G. D. Tourassi, and A. Ramanthan, “Hierarchical attention networks for information extraction from cancer pathology reports,” Journal of the American Medical Informatics Association, vol. 25, no. 3, pp. 321–330, Mar. 2018. [Online]. Available: https://academic.oup.com/jamia/article/25/3/321/4636780
  6. S. Gao, J. X. Qiu, M. Alawad, J. D. Hinkle, N. Schaefferkoetter, H.-J. Yoon, B. Christian, P. A. Fearn, L. Penberthy, X.-C. Wu, L. Coyle, G. Tourassi, and A. Ramanathan, “Classifying cancer pathology reports with hierarchical self-attention networks,” Artificial Intelligence in Medicine, vol. 101, p. 101726, Nov. 2019. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0933365719303562
  7. J. Wu, K. Tang, H. Zhang, C. Wang, and C. Li, “Structured Information Extraction of Pathology Reports with Attention-based Graph Convolutional Network,” in 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Dec. 2020, pp. 2395–2402. [Online]. Available: https://ieeexplore.ieee.org/document/9313347
  8. J. Kefeli and N. Tatonetti, “Generalizable and Automated Classification of TNM Stage from Pathology Reports with External Validation,” medRxiv, p. 2023.06.26.23291912, Jun. 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327265/
  9. K. De Angeli, S. Gao, M. Alawad, H.-J. Yoon, N. Schaefferkoetter, X.-C. Wu, E. B. Durbin, J. Doherty, A. Stroup, L. Coyle, L. Penberthy, and G. Tourassi, “Deep active learning for classifying cancer pathology reports,” BMC Bioinformatics, vol. 22, no. 1, p. 113, Mar. 2021. [Online]. Available: https://doi.org/10.1186/s12859-021-04047-1
  10. A. Y. Odisho, B. Park, N. Altieri, J. DeNero, M. R. Cooperberg, P. R. Carroll, and B. Yu, “Natural language processing systems for pathology parsing in limited data environments with uncertainty estimation,” JAMIA Open, vol. 3, no. 3, pp. 431–438, Oct. 2020, publisher: Oxford Academic. [Online]. Available: https://dx.doi.org/10.1093/jamiaopen/ooaa029
  11. C. Wu, W. Lin, X. Zhang, Y. Zhang, Y. Wang, and W. Xie, “PMC-LLaMA: Towards Building Open-source Language Models for Medicine,” Aug. 2023, arXiv:2304.14454 [cs]. [Online]. Available: http://arxiv.org/abs/2304.14454
  12. T. Han, L. C. Adams, J.-M. Papaioannou, P. Grundmann, T. Oberhauser, A. Löser, D. Truhn, and K. K. Bressem, “MedAlpaca – An Open-Source Collection of Medical Conversational AI Models and Training Data,” Oct. 2023, arXiv:2304.08247 [cs]. [Online]. Available: http://arxiv.org/abs/2304.08247
  13. A. Toma, P. R. Lawler, J. Ba, R. G. Krishnan, B. B. Rubin, and B. Wang, “Clinical Camel: An Open Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding,” Aug. 2023, arXiv:2305.12031 [cs]. [Online]. Available: http://arxiv.org/abs/2305.12031
  14. J. Kefeli and N. Tatonetti, “TCGA-Reports: A machine-readable pathology report resource for benchmarking text-based AI models,” Patterns, Feb. 2024, publisher: Elsevier. [Online]. Available: https://www.cell.com/patterns/abstract/S2666-3899(24)00024-2
  15. Y. Li, R. M. Wehbe, F. S. Ahmad, H. Wang, and Y. Luo, “Clinical-Longformer and Clinical-BigBird: Transformers for long clinical sequences,” 2022, publisher: arXiv Version Number: 3. [Online]. Available: https://arxiv.org/abs/2201.11838
  16. J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang, “BioBERT: a pre-trained biomedical language representation model for biomedical text mining,” Bioinformatics, vol. 36, no. 4, pp. 1234–1240, Feb. 2020. [Online]. Available: https://doi.org/10.1093/bioinformatics/btz682
  17. K. Huang, J. Altosaar, and R. Ranganath, “ClinicalBERT: Modeling Clinical Notes and Predicting Hospital Readmission,” Nov. 2020, arXiv:1904.05342 [cs]. [Online]. Available: http://arxiv.org/abs/1904.05342
  18. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open Foundation and Fine-Tuned Chat Models,” Jul. 2023, arXiv:2307.09288 [cs]. [Online]. Available: http://arxiv.org/abs/2307.09288
  19. Y. Li, Z. Li, K. Zhang, R. Dan, and Y. Zhang, “ChatDoctor: A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge,” Apr. 2023, arXiv:2303.14070 [cs]. [Online]. Available: http://arxiv.org/abs/2303.14070
  20. T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large Language Models are Zero-Shot Reasoners,” Advances in Neural Information Processing Systems, vol. 35, pp. 22 199–22 213, Dec. 2022. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
  21. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language Models are Few-Shot Learners,” in Advances in Neural Information Processing Systems, vol. 33.   Curran Associates, Inc., Jul. 2020, pp. 1877–1901.
  22. M. Sclar, Y. Choi, Y. Tsvetkov, and A. Suhr, “Quantifying Language Models’ Sensitivity to Spurious Features in Prompt Design or: How I learned to start worrying about prompt formatting,” Oct. 2023, arXiv:2310.11324 [cs]. [Online]. Available: http://arxiv.org/abs/2310.11324
  23. “Common Cancer Sites - Cancer Stat Facts.” [Online]. Available: https://seer.cancer.gov/statfacts/html/common.html
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube