Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

ML KPI Prediction in 5G and B5G Networks (2404.01530v1)

Published 1 Apr 2024 in cs.NI, cs.LG, cs.SY, and eess.SY

Abstract: Network operators are facing new challenges when meeting the needs of their customers. The challenges arise due to the rise of new services, such as HD video streaming, IoT, autonomous driving, etc., and the exponential growth of network traffic. In this context, 5G and B5G networks have been evolving to accommodate a wide range of applications and use cases. Additionally, this evolution brings new features, like the ability to create multiple end-to-end isolated virtual networks using network slicing. Nevertheless, to ensure the quality of service, operators must maintain and optimize their networks in accordance with the key performance indicators (KPIs) and the slice service-level agreements (SLAs). In this paper, we introduce a ML model used to estimate throughput in 5G and B5G networks with end-to-end (E2E) network slices. Then, we combine the predicted throughput with the current network state to derive an estimate of other network KPIs, which can be used to further improve service assurance. To assess the efficiency of our solution, a performance metric was proposed. Numerical evaluations demonstrate that our KPI prediction model outperforms those derived from other methods with the same or nearly the same computational time.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.