Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Game-Theoretic Deep Reinforcement Learning to Minimize Carbon Emissions and Energy Costs for AI Inference Workloads in Geo-Distributed Data Centers (2404.01459v1)

Published 1 Apr 2024 in cs.DC, cs.AI, and cs.LG

Abstract: Data centers are increasingly using more energy due to the rise in AI workloads, which negatively impacts the environment and raises operational costs. Reducing operating expenses and carbon emissions while maintaining performance in data centers is a challenging problem. This work introduces a unique approach combining Game Theory (GT) and Deep Reinforcement Learning (DRL) for optimizing the distribution of AI inference workloads in geo-distributed data centers to reduce carbon emissions and cloud operating (energy + data transfer) costs. The proposed technique integrates the principles of non-cooperative Game Theory into a DRL framework, enabling data centers to make intelligent decisions regarding workload allocation while considering the heterogeneity of hardware resources, the dynamic nature of electricity prices, inter-data center data transfer costs, and carbon footprints. We conducted extensive experiments comparing our game-theoretic DRL (GT-DRL) approach with current DRL-based and other optimization techniques. The results demonstrate that our strategy outperforms the state-of-the-art in reducing carbon emissions and minimizing cloud operating costs without compromising computational performance. This work has significant implications for achieving sustainability and cost-efficiency in data centers handling AI inference workloads across diverse geographic locations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube