Emphasising Structured Information: Integrating Abstract Meaning Representation into LLMs for Enhanced Open-Domain Dialogue Evaluation (2404.01129v4)
Abstract: Automatic open-domain dialogue evaluation has attracted increasing attention, yet remains challenging due to the complexity of assessing response appropriateness. Traditional evaluation metrics, typically trained with true positive and randomly selected negative responses, tend to assign higher scores to responses that share greater content similarity with contexts. However, adversarial negative responses, despite possessing high lexical overlap with contexts, can be semantically incongruous. Consequently, existing metrics struggle to effectively evaluate such responses, resulting in low correlations with human judgments. While recent studies have demonstrated the effectiveness of LLMs for open-domain dialogue evaluation, they still face challenges in handling adversarial negative examples. We propose a novel evaluation framework that integrates Abstract Meaning Representation (AMR) enhanced domain-specific LLMs (SLMs) with LLMs. Our SLMs explicitly incorporate AMR graph information through a gating mechanism for enhanced semantic representation learning, while both SLM predictions and AMR knowledge are integrated into LLM prompts for robust evaluation. Extensive experiments on open-domain dialogue evaluation tasks demonstrate the superiority of our method compared to state-of-the-art baselines. Our comprehensive ablation studies reveal that AMR graph information contributes substantially more to performance improvements. Our framework achieves strong correlations with human judgments across multiple datasets, establishing a new benchmark for dialogue evaluation. Our code and data are publicly available.