Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Primitive Recursive Dependent Type Theory (2404.01011v1)

Published 1 Apr 2024 in math.LO and cs.LO

Abstract: We show that restricting the elimination principle of the natural numbers type in Martin-L\"of Type Theory (MLTT) to a universe of types not containing $\Pi$-types ensures that all definable functions are primitive recursive. This extends the concept of primitive recursiveness to general types. We discuss extensions to univalent type theories and other notions of computability. We are inspired by earlier work by Martin Hofmann, work on Joyal's arithmetic universes, and Hugo Herbelin and Ludovic Patey's sketched Calculus of Primitive Recursive Constructions. We define a theory Tpr that is a subtheory of MLTT with two universes, such that all inductive types are finitary and the lowest universe is restricted to not contain $\Pi$-types. We prove soundness such that all functions $\mathbb{N}\to\mathbb{N}$ are primitive recursive. The proof requires that Tpr satisfies canonicity, which we easily prove using synthetic Tait computability.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.