Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

S2RC-GCN: A Spatial-Spectral Reliable Contrastive Graph Convolutional Network for Complex Land Cover Classification Using Hyperspectral Images (2404.00964v1)

Published 1 Apr 2024 in cs.CV

Abstract: Spatial correlations between different ground objects are an important feature of mining land cover research. Graph Convolutional Networks (GCNs) can effectively capture such spatial feature representations and have demonstrated promising results in performing hyperspectral imagery (HSI) classification tasks of complex land. However, the existing GCN-based HSI classification methods are prone to interference from redundant information when extracting complex features. To classify complex scenes more effectively, this study proposes a novel spatial-spectral reliable contrastive graph convolutional classification framework named S2RC-GCN. Specifically, we fused the spectral and spatial features extracted by the 1D- and 2D-encoder, and the 2D-encoder includes an attention model to automatically extract important information. We then leveraged the fused high-level features to construct graphs and fed the resulting graphs into the GCNs to determine more effective graph representations. Furthermore, a novel reliable contrastive graph convolution was proposed for reliable contrastive learning to learn and fuse robust features. Finally, to test the performance of the model on complex object classification, we used imagery taken by Gaofen-5 in the Jiang Xia area to construct complex land cover datasets. The test results show that compared with other models, our model achieved the best results and effectively improved the classification performance of complex remote sensing imagery.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. X. Liu, J. He, Y. Yao, J. Zhang, H. Liang, H. Wang, and Y. Hong, “Classifying urban land use by integrating remote sensing and social media data,” International Journal of Geographical Information Science, vol. 31, no. 8, pp. 1675–1696, 2017.
  2. X. Cheng and C. Zhang, “C2-yolo: Rotating object detection network for remote sensing images with complex backgrounds,” in 2022 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2022, pp. 1–8.
  3. P. Gong, J. Wang, L. Yu, Y. Zhao, Y. Zhao, L. Liang, Z. Niu, X. Huang, H. Fu, S. Liu et al., “Finer resolution observation and monitoring of global land cover: First mapping results with landsat tm and etm+ data,” International Journal of Remote Sensing, vol. 34, no. 7, pp. 2607–2654, 2013.
  4. Y. Chen, Q. Yuan, Y. Tang, Y. Xiao, J. He, and L. Zhang, “Spirit: Spectral awareness interaction network with dynamic template for hyperspectral object tracking,” IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1–16, 2024.
  5. S. Lai, L. Hu, J. Wang, L. Berti-Equille, and D. Wang, “Faithful vision-language interpretation via concept bottleneck models,” in The Twelfth International Conference on Learning Representations, 2023.
  6. S. Lai, X. Hu, H. Xu, Z. Ren, and Z. Liu, “Multimodal sentiment analysis: A survey,” Displays, p. 102563, 2023.
  7. S. Lai, X. Hu, J. Han, C. Wang, S. Mukhopadhyay, Z. Liu, and L. Ye, “Predicting lysine phosphoglycerylation sites using bidirectional encoder representations with transformers & protein feature extraction and selection,” in 2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI).   IEEE, 2022, pp. 1–6.
  8. H. Xu, S. Lai, X. Li, and Y. Yang, “Cross-domain car detection model with integrated convolutional block attention mechanism,” Image and Vision Computing, vol. 140, p. 104834, 2023.
  9. W. Chen, S. Ouyang, J. Yang, X. Li, G. Zhou, and L. Wang, “Jagan: A framework for complex land cover classification using gaofen-5 ahsi images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 1591–1603, 2022.
  10. Z. Chen, Z. Lu, H. Gao, Y. Zhang, J. Zhao, D. Hong, and B. Zhang, “Global to local: A hierarchical detection algorithm for hyperspectral image target detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2022.
  11. Z. Chen, G. Wu, H. Gao, Y. Ding, D. Hong, and B. Zhang, “Local aggregation and global attention network for hyperspectral image classification with spectral-induced aligned superpixel segmentation,” Expert Systems with Applications, vol. 232, p. 120828, 2023.
  12. Z. Chen, D. Hong, and H. Gao, “Grid network: Feature extraction in anisotropic perspective for hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, 2023.
  13. Z. Chen, Y. Wang, H. Gao, Y. Ding, Q. Zhong, D. Hong, and B. Zhang, “Temporal difference-guided network for hyperspectral image change detection,” International Journal of Remote Sensing, vol. 44, no. 19, pp. 6033–6059, 2023.
  14. Y. Chen, Y. Tang, Z. Yin, T. Han, B. Zou, and H. Feng, “Single object tracking in satellite videos: A correlation filter-based dual-flow tracker,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 6687–6698, 2022.
  15. Y. Chen, Y. Tang, T. Han, Y. Zhang, B. Zou, and H. Feng, “Ramc: A rotation adaptive tracker with motion constraint for satellite video single-object tracking,” Remote Sensing, vol. 14, no. 13, p. 3108, 2022.
  16. R. Guan, Z. Li, X. Li, and C. Tang, “Pixel-superpixel contrastive learning and pseudo-label correction for hyperspectral image clustering,” in ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, pp. 6795–6799.
  17. K. Liang, L. Meng, M. Liu, Y. Liu, W. Tu, S. Wang, S. Zhou, X. Liu, and F. Sun, “Reasoning over different types of knowledge graphs: Static, temporal and multi-modal,” arXiv preprint arXiv:2212.05767, 2022.
  18. Y. Liu, H. Li, M. Gong, J. Liu, Y. Wu, M. Zhang, and J. Shi, “Evolutionary multitasking cnn architecture search for hyperspectral image classification,” in 2022 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2022, pp. 01–08.
  19. W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural networks for hyperspectral image classification,” Journal of Sensors, vol. 2015, pp. 1–12, 2015.
  20. Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction and classification of hyperspectral images based on convolutional neural networks,” IEEE transactions on geoscience and remote sensing, vol. 54, no. 10, pp. 6232–6251, 2016.
  21. Y. Li, H. Zhang, and Q. Shen, “Spectral–spatial classification of hyperspectral imagery with 3d convolutional neural network,” Remote Sensing, vol. 9, no. 1, p. 67, 2017.
  22. Q. Yan, T. Hu, Y. Sun, H. Tang, Y. Zhu, W. Dong, L. Van Gool, and Y. Zhang, “Towards high-quality hdr deghosting with conditional diffusion models,” IEEE Transactions on Circuits and Systems for Video Technology, 2023.
  23. B. Wang, T. Hu, B. Li, X. Chen, and Z. Zhang, “Gatector: A unified framework for gaze object prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 19 588–19 597.
  24. X. Zhang, T. Hu, J. He, and Q. Yan, “Efficient content reconstruction for high dynamic range imaging,” in ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, pp. 7660–7664.
  25. B. Rasti, P. Ghamisi, J. Plaza, and A. Plaza, “Fusion of hyperspectral and lidar data using sparse and low-rank component analysis,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 11, pp. 6354–6365, 2017.
  26. Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral–spatial residual network for hyperspectral image classification: A 3-d deep learning framework,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 2, pp. 847–858, 2017.
  27. W. Wang, S. Dou, Z. Jiang, and L. Sun, “A fast dense spectral–spatial convolution network framework for hyperspectral images classification,” Remote sensing, vol. 10, no. 7, p. 1068, 2018.
  28. R. Guan, Z. Li, T. Li, X. Li, J. Yang, and W. Chen, “Classification of heterogeneous mining areas based on rescapsnet and gaofen-5 imagery,” Remote Sensing, vol. 14, no. 13, p. 3216, 2022.
  29. Z. Chen and Y. Ge, “Occluded cloth-changing person re-identification,” arXiv preprint arXiv:2403.08557, 2024.
  30. Y. Ge, K. Niu, Z. Chen, and Q. Zhang, “Lightweight traffic sign recognition model based on dynamic feature extraction,” in International Conference on Applied Intelligence.   Springer, 2023, pp. 339–350.
  31. Y. Ge, J. Zhang, Z. Chen, and B. Li, “End-to-end person search based on content awareness,” in 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML).   IEEE, 2023, pp. 1108–1111.
  32. J. Zhang, Z. Chen, Y. Ge, and M. Yu, “An efficient convolutional multi-scale vision transformer for image classification,” in 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML).   IEEE, 2023, pp. 344–347.
  33. Z. Chen, Y. Ge, J. Zhang, and X. Gao, “Multi-branch person re-identification net,” in 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML).   IEEE, 2023, pp. 1104–1107.
  34. J. Liu, R. Guan, Z. Li, J. Zhang, Y. Hu, and X. Wang, “Adaptive multi-feature fusion graph convolutional network for hyperspectral image classification,” Remote Sensing, vol. 15, no. 23, p. 5483, 2023.
  35. M. Liu, Y. Liu, K. Liang, S. Wang, S. Zhou, and X. Liu, “Deep temporal graph clustering,” arXiv preprint arXiv:2305.10738, 2023.
  36. J. Wang, C. Tang, Z. Li, X. Liu, W. Zhang, E. Zhu, and L. Wang, “Hyperspectral band selection via region-aware latent features fusion based clustering,” Information Fusion, vol. 79, pp. 162–173, 2022.
  37. L. Ma, A. Ma, C. Ju, and X. Li, “Graph-based semi-supervised learning for spectral-spatial hyperspectral image classification,” pattern recognition letters, vol. 83, pp. 133–142, 2016.
  38. A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, and Y. Y. Tang, “Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 2, pp. 241–245, 2018.
  39. S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, and J. Yang, “Multiscale dynamic graph convolutional network for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 5, pp. 3162–3177, 2019.
  40. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic superpixels compared to state-of-the-art superpixel methods,” IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 11, pp. 2274–2282, 2012.
  41. Q. Liu, L. Xiao, J. Yang, and Z. Wei, “Cnn-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 10, pp. 8657–8671, 2020.
  42. D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph convolutional networks for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 7, pp. 5966–5978, 2021.
  43. Z. Ma, Z. Jiang, and H. Zhang, “Hyperspectral image classification using feature fusion hypergraph convolution neural network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.
  44. M. Zhang, H. Luo, W. Song, H. Mei, and C. Su, “Spectral-spatial offset graph convolutional networks for hyperspectral image classification,” Remote Sensing, vol. 13, no. 21, p. 4342, 2021.
  45. X. Huang, M. Dong, J. Li, and X. Guo, “A 3-d-swin transformer-based hierarchical contrastive learning method for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2022.
  46. T. Lu, Y. Hu, W. Fu, K. Ding, B. Bai, and L. Fang, “Scl-net: An end-to-end supervised contrastive learning network for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–12, 2022.
  47. R. Guan, Z. Li, W. Tu, J. Wang, Y. Liu, X. Li, C. Tang, and R. Feng, “Contrastive multi-view subspace clustering of hyperspectral images based on graph convolutional networks,” IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1–14, 2024.
  48. W. Yu, S. Wan, G. Li, J. Yang, and C. Gong, “Hyperspectral image classification with contrastive graph convolutional network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–15, 2023.
  49. X. Li, Z. Ni, and T. Zhang, “Mixture of personality improved spiking actor network for efficient multi-agent cooperation,” Frontiers in Neuroscience, vol. 17, p. 1219405, 2023.
  50. Z. Wang, Z. Zhang, J. Wang, C. Jiang, W. Wei, and Y. Ren, “Auv-assisted node repair for iout relying on multiagent reinforcement learning,” IEEE Internet of Things Journal, vol. 11, no. 3, pp. 4139–4151, 2024.
  51. X. Hou, J. Wang, C. Jiang, Z. Meng, J. Chen, and Y. Ren, “Efficient federated learning for metaverse via dynamic user selection, gradient quantization and resource allocation,” IEEE Journal on Selected Areas in Communications, vol. 42, no. 4, pp. 850–866, 2024.
  52. F. Shen, Y. Xie, J. Zhu, X. Zhu, and H. Zeng, “Git: Graph interactive transformer for vehicle re-identification,” IEEE Transactions on Image Processing, 2023.
  53. F. Shen, J. Zhu, X. Zhu, Y. Xie, and J. Huang, “Exploring spatial significance via hybrid pyramidal graph network for vehicle re-identification,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 8793–8804, 2021.
  54. Y. Xia, X. Shao, T. Ding, and J. Liu, “Prescribed intelligent elliptical pursuing by uavs: A reinforcement learning policy,” Expert Systems with Applications, vol. 249, p. 123547, 2024.
  55. Z. Wang, J. Du, C. Jiang, Z. Zhang, Y. Ren, and Z. Han, “Dynamic packet routing based on acoustic signal curve propagation in the auv-assisted iout,” IEEE Internet of Things Journal, vol. 11, no. 6, pp. 9854–9869, 2024.
  56. X. Hou, J. Wang, C. Jiang, X. Zhang, Y. Ren, and M. Debbah, “Uav-enabled covert federated learning,” IEEE Transactions on Wireless Communications, vol. 22, no. 10, pp. 6793–6809, 2023.
  57. F. Shen, X. Du, L. Zhang, and J. Tang, “Triplet contrastive learning for unsupervised vehicle re-identification,” arXiv preprint arXiv:2301.09498, 2023.
  58. F. Shen, X. Shu, X. Du, and J. Tang, “Pedestrian-specific bipartite-aware similarity learning for text-based person retrieval,” in Proceedings of the 31th ACM International Conference on Multimedia, 2023.
  59. F. Shen, J. Zhu, X. Zhu, J. Huang, H. Zeng, Z. Lei, and C. Cai, “An efficient multiresolution network for vehicle reidentification,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 9049–9059, 2021.
  60. R. Li, Y. Hu, L. Li, R. Guan, R. Yang, J. Zhan, W. Cai, Y. Wang, H. Xu, and L. Li, “Smwe-gfpnnet: A high-precision and robust method for forest fire smoke detection,” Knowledge-Based Systems, vol. 289, p. 111528, 2024.
  61. Z. Liu, R. Guan, J. Hu, W. Chen, and X. Li, “Remote sensing scene data generation using element geometric transformation and gan-based texture synthesis,” Applied Sciences, vol. 12, no. 8, p. 3972, 2022.
  62. C. Rodarmel and J. Shan, “Principal component analysis for hyperspectral image classification,” Surveying and Land Information Science, vol. 62, no. 2, pp. 115–122, 2002.
  63. Z. Ma, Z. Jiang, and H. Zhang, “Hyperspectral image classification using feature fusion hypergraph convolution neural network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022.
  64. Y. Ding, X. Zhao, Z. Zhang, W. Cai, and N. Yang, “Graph sample and aggregate-attention network for hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.