Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

CAAP: Class-Dependent Automatic Data Augmentation Based On Adaptive Policies For Time Series (2404.00898v1)

Published 1 Apr 2024 in cs.LG

Abstract: Data Augmentation is a common technique used to enhance the performance of deep learning models by expanding the training dataset. Automatic Data Augmentation (ADA) methods are getting popular because of their capacity to generate policies for various datasets. However, existing ADA methods primarily focused on overall performance improvement, neglecting the problem of class-dependent bias that leads to performance reduction in specific classes. This bias poses significant challenges when deploying models in real-world applications. Furthermore, ADA for time series remains an underexplored domain, highlighting the need for advancements in this field. In particular, applying ADA techniques to vital signals like an electrocardiogram (ECG) is a compelling example due to its potential in medical domains such as heart disease diagnostics. We propose a novel deep learning-based approach called Class-dependent Automatic Adaptive Policies (CAAP) framework to overcome the notable class-dependent bias problem while maintaining the overall improvement in time-series data augmentation. Specifically, we utilize the policy network to generate effective sample-wise policies with balanced difficulty through class and feature information extraction. Second, we design the augmentation probability regulation method to minimize class-dependent bias. Third, we introduce the information region concepts into the ADA framework to preserve essential regions in the sample. Through a series of experiments on real-world ECG datasets, we demonstrate that CAAP outperforms representative methods in achieving lower class-dependent bias combined with superior overall performance. These results highlight the reliability of CAAP as a promising ADA method for time series modeling that fits for the demands of real-world applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.