Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ParaICL: Towards Parallel In-Context Learning (2404.00570v2)

Published 31 Mar 2024 in cs.CL

Abstract: LLMs have become the norm in NLP, excelling in few-shot in-context learning (ICL) with their remarkable abilities. Nonetheless, the success of ICL largely hinges on the choice of few-shot demonstration examples, making the selection process increasingly crucial. Existing methods have delved into optimizing the quantity and semantic similarity of these examples to improve ICL performances. However, our preliminary experiments indicate that the effectiveness of ICL is limited by the length of the input context. Moreover, varying combinations of few-shot demonstration examples can significantly boost accuracy across different test samples. To address this, we propose a novel method named parallel in-context learning (ParaICL) that effectively utilizes all demonstration examples without exceeding the manageable input context length. ParaICL employs parallel batching to distribute demonstration examples into different batches according to the semantic similarities of the questions in the demonstrations to the test question. It then computes normalized batch semantic scores for each batch. A weighted average semantic objective, constrained by adaptive plausibility, is applied to select the most appropriate tokens. Through extensive experiments, we validate the effectiveness of ParaICL and conduct ablation studies to underscore its design rationale. We further demonstrate that ParaICL can seamlessly integrate with existing methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.