Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Convergence of Continuous Normalizing Flows for Learning Probability Distributions (2404.00551v1)

Published 31 Mar 2024 in stat.ML and cs.LG

Abstract: Continuous normalizing flows (CNFs) are a generative method for learning probability distributions, which is based on ordinary differential equations. This method has shown remarkable empirical success across various applications, including large-scale image synthesis, protein structure prediction, and molecule generation. In this work, we study the theoretical properties of CNFs with linear interpolation in learning probability distributions from a finite random sample, using a flow matching objective function. We establish non-asymptotic error bounds for the distribution estimator based on CNFs, in terms of the Wasserstein-2 distance. The key assumption in our analysis is that the target distribution satisfies one of the following three conditions: it either has a bounded support, is strongly log-concave, or is a finite or infinite mixture of Gaussian distributions. We present a convergence analysis framework that encompasses the error due to velocity estimation, the discretization error, and the early stopping error. A key step in our analysis involves establishing the regularity properties of the velocity field and its estimator for CNFs constructed with linear interpolation. This necessitates the development of uniform error bounds with Lipschitz regularity control of deep ReLU networks that approximate the Lipschitz function class, which could be of independent interest. Our nonparametric convergence analysis offers theoretical guarantees for using CNFs to learn probability distributions from a finite random sample.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com